Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Transcription-independent functions of MYC: regulation of translation and DNA replication

Abstract

MYC is a potent oncogene that drives unrestrained cell growth and proliferation. Shortly after its discovery as an oncogene, the MYC protein was recognized as a sequence-specific transcription factor. Since that time, MYC oncogene research has focused on the mechanism of MYC-induced transcription and on the identification of MYC transcriptional target genes. Recently, MYC was shown to control protein expression through mRNA translation and to directly regulate DNA replication, thus initiating exciting new areas of oncogene research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The conserved regions of MYC.
Figure 2: Mechanisms of MYC-induced transcription.
Figure 3: Mechanism of MYC-induced mRNA cap methylation.

Similar content being viewed by others

References

  1. Oster, S. K., Ho, C. S., Soucie, E. L. & Penn, L. Z. The myc oncogene: MarvelouslY Complex. Adv. Cancer Res. 84, 81–154 (2002).

    Article  CAS  Google Scholar 

  2. Pirity, M., Blanck, J. K. & Schreiber-Agus, N. Lessons learned from Myc/Max/Mad knockout mice. Curr. Top. Microbiol. Immunol. 302, 205–234 (2006).

    CAS  PubMed  Google Scholar 

  3. Evan, G. I. & Vousden, K. H. Proliferation, cell cycle and apoptosis in cancer. Nature 411, 342–348 (2001).

    Article  CAS  Google Scholar 

  4. Dang, C. V. et al. The c-Myc target gene network. Semin. Cancer Biol. 16, 253–264 (2006).

    Article  CAS  Google Scholar 

  5. Felsher, D. W. & Bishop, J. M. Reversible tumorigenesis by MYC in hematopoietic lineages. Mol. Cell 4, 199–207 (1999).

    Article  CAS  Google Scholar 

  6. Vita, M. & Henriksson, M. The Myc oncoprotein as a therapeutic target for human cancer. Semin. Cancer Biol. 16, 318–330 (2006).

    Article  CAS  Google Scholar 

  7. Patel, J. H., Loboda, A. P., Showe, M. K., Showe, L. C. & McMahon, S. B. Analysis of genomic targets reveals complex functions of MYC. Nature Rev. Cancer 4, 562–568 (2004).

    Article  CAS  Google Scholar 

  8. Adhikary, S. & Eilers, M. Transcriptional regulation and transformation by Myc proteins. Nature Rev. Mol. Cell Biol. 6, 635–645 (2005).

    Article  CAS  Google Scholar 

  9. Cowling, V. H. & Cole, M. D. Mechanism of transcriptional activation by the Myc oncoproteins. Semin. Cancer Biol. 16, 242–252 (2006).

    Article  CAS  Google Scholar 

  10. Cowling, V. H. & Cole, M. D. The Myc transactivation domain promotes global phosphorylation of the RNA polymerase II carboxy-terminal domain independently of direct DNA binding. Mol. Cell. Biol. 27, 2059–2073 (2007).

    Article  CAS  Google Scholar 

  11. Dominguez-Sola, D. et al. Non-transcriptional control of DNA replication by c-Myc. Nature 448, 445–451 (2007).

    Article  CAS  Google Scholar 

  12. Hurlin, P. J. & Huang, J. The MAX-interacting transcription factor network. Semin. Cancer Biol. 16, 265–274 (2006).

    Article  CAS  Google Scholar 

  13. Gomez-Roman, N., Grandori, C., Eisenman, R. N. & White, R. J. Direct activation of RNA polymerase III transcription by c-Myc. Nature 421, 290–294 (2003).

    CAS  PubMed  Google Scholar 

  14. Kenneth, N. S. et al. TRRAP and GCN5 are used by c-Myc to activate RNA polymerase III transcription. Proc. Natl Acad. Sci. USA 104, 14917–14922 (2007).

    Article  CAS  Google Scholar 

  15. Grandori, C. et al. c-Myc binds to human ribosomal DNA and stimulates transcription of rRNA genes by RNA polymerase I. Nature Cell Biol. 7, 311–318 (2005).

    Article  CAS  Google Scholar 

  16. Grewal, S. S., Li, L., Orian, A., Eisenman, R. N. & Edgar, B. A. Myc-dependent regulation of ribosomal RNA synthesis during Drosophila development. Nature Cell Biol. 7, 295–302 (2005).

    Article  CAS  Google Scholar 

  17. Arabi, A. et al. c-Myc associates with ribosomal DNA and activates RNA polymerase I transcription. Nature Cell Biol. 7, 303–310 (2005).

    Article  CAS  Google Scholar 

  18. O'Donnell, K. A., Wentzel, E. A., Zeller, K. I., Dang, C. V. & Mendell, J. T. c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435, 839–843 (2005).

    Article  CAS  Google Scholar 

  19. Chang, T. C. et al. Widespread microRNA repression by Myc contributes to tumorigenesis. Nature Genet. 40, 43–50 (2008).

    Article  CAS  Google Scholar 

  20. McMahon, S. B., Van Buskirk, H. A., Dugan, K. A., Copeland, T. D. & Cole, M. D. The novel ATM-related protein TRRAP is an essential cofactor for the c-Myc and E2F oncoproteins. Cell 94, 363–374 (1998).

    Article  CAS  Google Scholar 

  21. McMahon, S. B., Wood, M. A. & Cole, M. D. The essential cofactor TRRAP recruits the histone acetyltransferase hGCN5 to c-Myc. Mol. Cell. Biol. 20, 556–562 (2000).

    Article  CAS  Google Scholar 

  22. Frank, S. R., Schroeder, M., Fernandez, P., Taubert, S. & Amati, B. Binding of c-Myc to chromatin mediates mitogen-induced acetylation of histone H4 and gene activation. Genes Dev. 15, 2069–2082 (2001).

    Article  CAS  Google Scholar 

  23. Vervoorts, J. et al. Stimulation of c-MYC transcriptional activity and acetylation by recruitment of the cofactor CBP. EMBO Rep. 4, 484–490 (2003).

    Article  CAS  Google Scholar 

  24. Lee, K. K. & Workman, J. L. Histone acetyltransferase complexes: one size doesn't fit all. Nature Rev. Mol. Cell Biol. 8, 284–295 (2007).

    Article  CAS  Google Scholar 

  25. Li, B., Carey, M. & Workman, J. L. The role of chromatin during transcription. Cell 128, 707–719 (2007).

    Article  CAS  Google Scholar 

  26. Roth, S. Y., Denu, J. M. & Allis, C. D. Histone acetyltransferases. Annu. Rev. Biochem. 70, 81–120 (2001).

    Article  CAS  Google Scholar 

  27. Guenther, M. G., Levine, S. S., Boyer, L. A., Jaenisch, R. & Young, R. A. A chromatin landmark and transcription initiation at most promoters in human cells. Cell 130, 77–88 (2007).

    Article  CAS  Google Scholar 

  28. Saunders, A., Core, L. J. & Lis, J. T. Breaking barriers to transcription elongation. Nature Rev. Mol. Cell Biol. 7, 557–567 (2006).

    Article  CAS  Google Scholar 

  29. Price, D. H. Poised polymerases: on your mark...get set...go! Mol. Cell 30, 7–10 (2008).

    Article  CAS  Google Scholar 

  30. Eberhardy, S. R. & Farnham, P. J. c-Myc mediates activation of the cad promoter via a post-RNA polymerase II recruitment mechanism. J. Biol. Chem. 276, 48562–48571 (2001).

    Article  CAS  Google Scholar 

  31. Eberhardy, S. R. & Farnham, P. J. Myc recruits P-TEFb to mediate the final step in the transcriptional activation of the cad promoter. J. Biol. Chem. 277, 40156–40162 (2002).

    Article  CAS  Google Scholar 

  32. Bouchard, C., Marquardt, J., Bras, A., Medema, R. H. & Eilers, M. Myc-induced proliferation and transformation require Akt-mediated phosphorylation of FoxO proteins. EMBO J. 23, 2830–2840 (2004).

    Article  CAS  Google Scholar 

  33. Cowling, V. H., Chandriani, S., Whitfield, M. L. & Cole, M. D. A conserved Myc protein domain, MBIV, regulates DNA binding, apoptosis, transformation, and G2 arrest. Mol. Cell Biol. 26, 4226–4239 (2006).

    Article  CAS  Google Scholar 

  34. Maruyama, K., Schiavi, S. C., Huse, W., Johnson, G. L. & Ruley, H. E. myc and E1A oncogenes alter the responses of PC12 cells to nerve growth factor and block differentiation. Oncogene 1, 361–367 (1987).

    CAS  PubMed  Google Scholar 

  35. Spandidos, D. A. The effect of exogenous human ras and myc oncogenes in morphological differentiation of the rat pheochromocytoma PC12 cells. Int. J. Dev. Neurosci. 7, 1–4 (1989).

    Article  CAS  Google Scholar 

  36. Hopewell, R. & Ziff, E. B. The nerve growth factor-responsive PC12 cell line does not express the Myc dimerization partner Max. Mol. Cell Biol. 15, 3470–3478 (1995).

    Article  CAS  Google Scholar 

  37. Ribon, V., Leff, T. & Saltiel, A. R. c-Myc does not require max for transcriptional activity in PC-12 cells. Mol. Cell Neurosci. 5, 277–282 (1994).

    Article  CAS  Google Scholar 

  38. Bentley, D. L. Rules of engagement: co-transcriptional recruitment of pre-mRNA processing factors. Curr. Opin. Cell Biol. 17, 251–256 (2005).

    Article  CAS  Google Scholar 

  39. Shatkin, A. J. Capping of eucaryotic mRNAs. Cell 9, 645–653 (1976).

    Article  CAS  Google Scholar 

  40. Shuman, S. What messenger RNA capping tells us about eukaryotic evolution. Nature Rev. Mol. Cell Biol. 3, 619–625 (2002).

    Article  CAS  Google Scholar 

  41. Schwer, B., Mao, X. & Shuman, S. Accelerated mRNA decay in conditional mutants of yeast mRNA capping enzyme. Nucleic Acids Res. 26, 2050–2057 (1998).

    Article  CAS  Google Scholar 

  42. Moteki, S. & Price, D. Functional coupling of capping and transcription of mRNA. Mol. Cell 10, 599–609 (2002).

    Article  CAS  Google Scholar 

  43. Komarnitsky, P., Cho, E. J. & Buratowski, S. Different phosphorylated forms of RNA polymerase II and associated mRNA processing factors during transcription. Genes Dev. 14, 2452–2460 (2000).

    Article  CAS  Google Scholar 

  44. Schroeder, S. C., Schwer, B., Shuman, S. & Bentley, D. Dynamic association of capping enzymes with transcribing RNA polymerase II. Genes Dev. 14, 2435–2440 (2000).

    Article  CAS  Google Scholar 

  45. Schroeder, S. C., Zorio, D. A., Schwer, B., Shuman, S. & Bentley, D. A function of yeast mRNA cap methyltransferase, Abd1, in transcription by RNA polymerase II. Mol. Cell 13, 377–387 (2004).

    Article  CAS  Google Scholar 

  46. Li, Z. et al. A global transcriptional regulatory role for c-Myc in Burkitt's lymphoma cells. Proc. Natl Acad. Sci. USA 100, 8164–8169 (2003).

    Article  CAS  Google Scholar 

  47. Machida, Y. J., Hamlin, J. L. & Dutta, A. Right place, right time, and only once: replication initiation in metazoans. Cell 123, 13–24 (2005).

    Article  CAS  Google Scholar 

  48. Felsher, D. W. & Bishop, J. M. Transient excess of MYC activity can elicit genomic instability and tumorigenesis. Proc. Natl Acad. Sci. USA 96, 3940–3944 (1999).

    Article  CAS  Google Scholar 

  49. Mai, S. et al. Chromosomal and extrachromosomal instability of the cyclin D2 gene is induced by Myc overexpression. Neoplasia 1, 241–252 (1999).

    Article  CAS  Google Scholar 

  50. Cole, M. D. The myc oncogene: its role in transformation and differentiation. Ann. Rev. Gen. 20, 361–385 (1986).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by National Institutes of Health research grants to M.D.C. and a Medical Research Council Career Development Award to V.H.C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael D. Cole.

Related links

Related links

FURTHER INFORMATION

Michael D. Cole's homepage

Victoria H. Cowling's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cole, M., Cowling, V. Transcription-independent functions of MYC: regulation of translation and DNA replication. Nat Rev Mol Cell Biol 9, 810–815 (2008). https://doi.org/10.1038/nrm2467

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2467

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing