Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Membrane-protein topology

Key Points

  • The topology of an integral membrane protein describes the number and approximate locations in the sequence of the transmembrane segments, as well as the overall orientation of the protein in a membrane.

  • Topology is controlled primarily by the hydrophobicity and length of transmembrane helices as well as the distribution of positively charged residues in the loops that connect the helices.

  • In most cases, topology is determined co-translationally during the translocon-mediated insertion of a polypeptide into a membrane.

  • Topologies in which both the N terminus and the C terminus of a protein are in the cytoplasm are predominant in both prokaryotic and eukaryotic cells.

  • Membrane proteins evolve primarily by gene duplication and gene fusion. Many membrane proteins form dimers in which the two homologous chains have the same topology (parallel dimer) or opposite topologies (antiparallel dimer). Gene fusions create internally duplicated structures in which the two halves of a protein are orientated either in a parallel or an antiparallel manner.

Abstract

In the world of membrane proteins, topology defines an important halfway house between the amino-acid sequence and the fully folded three-dimensional structure. Although the concept of membrane-protein topology dates back at least 30 years, recent advances in the field of translocon-mediated membrane-protein assembly, proteome-wide studies of membrane-protein topology and an exponentially growing number of high-resolution membrane-protein structures have given us a deeper understanding of how topology is determined and of how it evolves.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Helix-bundle membrane proteins.
Figure 2: Different amino acids have distinct preferences for different parts of the membrane.
Figure 3: Recognition of a transmembrane helix by the Sec61 translocon.
Figure 4: The distribution of topologies in membrane proteomes.
Figure 5: The candidate dual-topology protein EmrE from Escherichia coli.
Figure 6: Dynamic topologies.
Figure 7: Topology evolution.

Similar content being viewed by others

References

  1. von Heijne, G. Recent advances in the understanding of membrane protein assembly and structure. Quart. Rev. Biophys. 32, 285–307 (2000).

    Article  Google Scholar 

  2. White, S. H. The progress of membrane protein structure determination. Protein Sci. 13, 1948–1949 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Edmonds, B. W. & Luecke, H. Atomic resolution structures and the mechanism of ion pumping in bacteriorhodopsin. Front. Biosci. 9, 1556–1566 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Bowie, J. U. Helix packing in membrane proteins. J. Mol. Biol. 272, 780–789 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Langosch, D. & Heringa, J. Interaction of transmembrane helices by a knobs-into-holes geometry reminiscent of soluble coiled coils. Proteins 31, 150–159 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Dutzler, R., Campbell, E. B., Cadene, M., Chait, B. T. & MacKinnon, R. X-ray structure of a ClC chloride channel at 3. 0 Å reveals the molecular basis of anion selectivity. Nature 415, 287–294 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Dutzler, R., Campbell, E. B. & MacKinnon, R. Gating the selectivity filter in ClC chloride channels. Science 300, 108–112 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Toyoshima, C. & Nomura, H. Structural changes in the calcium pump accompanying the dissociation of calcium. Nature 418, 605–611 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Olesen, C., Sorensen, T. L., Nielsen, R. C., Moller, J. V. & Nissen, P. Dephosphorylation of the calcium pump coupled to counterion occlusion. Science 306, 2251–2255 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Sorensen, T. L., Moller, J. V. & Nissen, P. Phosphoryl transfer and calcium ion occlusion in the calcium pump. Science 304, 1672–1675 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Toyoshima, C., Nomura, H. & Tsuda, T. Lumenal gating mechanism revealed in calcium pump crystal structures with phosphate analogues. Nature 432, 361–368 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Abramson, J. et al. Structure and mechanism of the lactose permease of Escherichia coli. Science 301, 610–615 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Huang, Y., Lemieux, M. J., Song, J., Auer, M. & Wang, D. N. Structure and mechanism of the glycerol-3-phosphate transporter from Escherichia coli. Science 301, 616–620 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Ruta, V., Chen, J. & MacKinnon, R. Calibrated measurement of gating-charge arginine displacement in the KvAP voltage-dependent K+ channel. Cell 123, 463–475 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Ulmschneider, M. B., Sansom, M. S. & Di Nola, A. Properties of integral membrane protein structures: derivation of an implicit membrane potential. Proteins 59, 252–265 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. von Heijne, G. The distribution of positively charged residues in bacterial inner membrane proteins correlates with the trans-membrane topology. EMBO J. 5, 3021–3027 (1986).

    Article  CAS  Google Scholar 

  17. Nilsson, J., Persson, B. & von Heijne, G. Comparative analysis of amino acid distributions in integral membrane proteins from 107 genomes. Proteins 60, 606–616 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Alder, N. N. & Johnson, A. E. Cotranslational membrane protein biogenesis at the endoplasmic reticulum. J. Biol. Chem. 279, 22787–22790 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Rapoport, T. A., Goder, V., Heinrich, S. U. & Matlack, K. E. Membrane-protein integration and the role of the translocation channel. Trends Cell. Biol. 14, 568–575 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. van den Berg, B. et al. X-ray structure of a protein-conducting channel. Nature 427, 36–44 (2004). The first, and so far only, high-resolution structure of a translocon.

    Article  CAS  PubMed  Google Scholar 

  21. Morgan, D. G., Menetret, J. F., Neuhof, A., Rapoport, T. A. & Akey, C. W. Structure of the mammalian ribosome-channel complex at 17 Å resolution. J. Mol. Biol. 324, 871–886 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Mitra, K. et al. Structure of the E. coli protein-conducting channel bound to a translating ribosome. Nature 438, 318–324 (2005). A single-particle electron-microscopy structure of a ribosome–translocon complex.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sadlish, H., Pitonzo, D., Johnson, A. E. & Skach, W. R. Sequential triage of transmembrane segments by Sec61α during biogenesis of a native multispanning membrane protein. Nature Struct. Mol. Biol. 12, 870–878 (2005). A detailed analysis of the order in which different transmembrane helices exit the Sec61 translocon.

    Article  CAS  Google Scholar 

  24. Ismail, N., Crawshaw, S. G. & High, S. Active and passive displacement of transmembrane domains both occur during opsin biogenesis at the Sec61 translocon. J. Cell Sci. 119, 2826–2836 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Luirink, J., von Heijne, G., Houben, E. & de Gier, J. W. Biogenesis of inner membrane proteins in Escherichia coli. Annu. Rev. Microbiol. 59, 329–355 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. White, S. H. & Wimley, W. C. Membrane protein folding and stability: physical principles. Annu. Rev. Biophys. Biomol. Struc. 28, 319–365 (1999).

    Article  CAS  Google Scholar 

  27. Hessa, T. et al. Recognition of transmembrane helices by the endoplasmic reticulum translocon. Nature 433, 377–381 (2005). The first quantitative analysis of the translocon-mediated recognition of transmembrane helices.

    Article  CAS  PubMed  Google Scholar 

  28. Hessa, T., White, S. H. & von Heijne, G. Membrane insertion of a potassium channel voltage sensor. Science 307, 1427 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Heinrich, S., Mothes, W., Brunner, J. & Rapoport, T. The Sec61p complex mediates the integration of a membrane protein by allowing lipid partitioning of the transmembrane domain. Cell 102, 233–244 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Rehling, P., Brandner, K. & Pfanner, N. Mitochondrial import and the twin-pore translocase. Nature Rev. Mol. Cell. Biol. 5, 519–530 (2004).

    Article  CAS  Google Scholar 

  31. Krogh, A., Larsson, B., von Heijne, G. & Sonnhammer, E. Predicting transmembrane protein topology with a hidden Markov model. Application to complete genomes. J. Mol. Biol. 305, 567–580 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Daley, D. O. et al. Global topology analysis of the Escherichia coli inner membrane proteome. Science 308, 1321–1323 (2005). The first experimental proteome-wide study of membrane-protein topology.

    Article  CAS  PubMed  Google Scholar 

  33. Kim, H., Ö sterberg, M., Melé n, K. & von Heijne, G. A global topology map of the Saccharomyces cerevisiae membrane proteome. Proc. Natl Acad. Sci. USA 103, 11142–11147 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fredriksson, R., Lagerstrom, M. C., Lundin, L. G. & Schioth, H. B. The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol. Pharm. 63, 1256–1272 (2003).

    Article  CAS  Google Scholar 

  35. Granseth, E., Viklund, H. & Elofsson, A. ZPRED: predicting the distance to the membrane center for residues in α-helical membrane proteins. Bioinformatics 22, e191–e196 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Viklund, H., Granseth, E. & Elofsson, A. Reentrant regions in α-helical transmembrane proteins are divided in 3 structural classes and abundant in small residues. J. Mol. Biol. 361, 591–603 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Yohannan, S., Faham, S., Yang, D., Whitelegge, J. P. & Bowie, J. U. The evolution of transmembrane helix kinks and the structural diversity of G protein-coupled receptors. Proc. Natl Acad. Sci. USA 101, 959–963 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ninio, S., Elbaz, Y. & Schuldiner, S. The membrane topology of EmrE — a small multidrug transporter from Escherichia coli. FEBS Lett. 562, 193–196 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Rapp, M., Seppälä, S., Granseth, E. & von Heijne, G. Identification and evolution of dual topology membrane proteins. Nature Struct. Mol. Biol. 13, 112–116 (2006).

    Article  CAS  Google Scholar 

  40. Pornillos, O., Chen, Y. J., Chen, A. P. & Chang, G. X-ray structure of the EmrE multidrug transporter in complex with a substrate. Science 310, 1950–1953 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Ubarretxena-Belandia, I., Baldwin, J. M., Schuldiner, S. & Tate, C. G. Three-dimensional structure of the bacterial multidrug transporter EmrE shows it is an asymmetric homodimer. EMBO J. 22, 6175–6181 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tate, C. G. Comparison of three structures of the multidrug transporter EmrE. Curr. Opin. Struct. Biol. 16, 457–464 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Dunlop, J., Jones, P. C. & Finbow, M. E. Membrane insertion and assembly of ductin: a polytopic channel with dual orientations. EMBO J. 14, 3609–3616 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sadlish, H. & Skach, W. R. Biogenesis of CFTR and other polytopic membrane proteins: new roles for the ribosome-translocon complex. J. Membr. Biol. 202, 115–126 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Meindl-Beinker, N. M., Lundin, C., Nilsson, I., White, S. H. & von Heijne, G. Asn- and Asp-mediated interactions between transmembrane helices during translocon-mediated membrane protein assembly. EMBO Rep. 7, 1111–1116 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kim, S. J., Rahbar, R. & Hegde, R. S. Combinatorial control of prion protein biogenesis by the signal sequence and transmembrane domain. J. Biol. Chem. 276, 26132–26140 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Hölscher, C., Bach, U. C. & Dobberstein, B. Prion protein contains a second endoplasmic reticulum targeting signal sequence located at its C terminus. J. Biol. Chem. 276, 13388–13394 (2001).

    Article  PubMed  Google Scholar 

  48. Ott, C. M. & Lingappa, V. R. Signal sequences influence membrane integration of the prion protein. Biochemistry 43, 11973–11982 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Hegde, R. et al. A transmembrane form of the prion protein in neurodegenerative diseases. Science 279, 827–834 (1998).

    Article  CAS  PubMed  Google Scholar 

  50. Glatzel, M., Stoeck, K., Seeger, H., Luhrs, T. & Aguzzi, A. Human prion diseases: molecular and clinical aspects. Arch. Neurol. 62, 545–552 (2005).

    Article  PubMed  Google Scholar 

  51. Gafvelin, G. & von Heijne, G. Topological 'frustration' in multi-spanning E. coli inner membrane proteins. Cell 77, 401–412 (1994).

    Article  CAS  PubMed  Google Scholar 

  52. Ota, K., Sakaguchi, M., von Heijne, G., Hamasaki, N. & Mihara, K. Forced transmembrane orientation of hydrophilic polypeptide segments in multispanning membrane proteins. Mol. Cell 2, 495–503 (1998).

    Article  CAS  PubMed  Google Scholar 

  53. Higy, M., Junne, T. & Spiess, M. Topogenesis of membrane proteins at the endoplasmic reticulum. Biochemistry 43, 12716–12722 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Denzer, A. J., Nabholz, C. E. & Spiess, M. Transmembrane orientation of signal-anchor proteins is affected by the folding state but not the size of the N-terminal domain. EMBO J. 14, 6311–6317 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Goder, V., Bieri, C. & Spiess, M. Glycosylation can influence topogenesis of membrane proteins and reveals dynamic reorientation of nascent polypeptides within the translocon. J. Cell Biol. 147, 257–266 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Nishiyama, K., Suzuki, T. & Tokuda, H. Inversion of the membrane topology of SecG coupled with SecA-sependent preprotein translocation. Cell 85, 71–81 (1996).

    Article  CAS  PubMed  Google Scholar 

  57. Nagamori, S., Nishiyama, K. & Tokuda, H. Membrane topology inversion of SecG detected by labeling with a membrane-impermeable sulfhydryl reagent that causes a close association of SecG with SecA. J. Biochem. (Tokyo) 132, 629–634 (2002).

    Article  CAS  Google Scholar 

  58. van der Sluis, E. O., van der Vries, E., Berrelkamp, G., Nouwen, N. & Driessen, A. J. Topologically fixed SecG is fully functional. J. Bacteriol. 188, 1188–1190 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lu, Y. et al. Reorientation of aquaporin-1 topology during maturation in the endoplasmic reticulum. Mol. Biol. Cell 11, 2973–2985 (2000). Shows that transmembrane helices can reorientate across the membrane during translocon-mediated membrane-protein insertion.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lambert, C. & Prange, R. Dual topology of the hepatitis B virus large envelope protein: determinants influencing post-translational pre-S translocation. J. Biol. Chem. 276, 22265–22272 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Lambert, C., Mann, S. & Prange, R. Assessment of determinants affecting the dual topology of hepadnaviral large envelope proteins. J. Gen. Virol. 85, 1221–1225 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Lambert, C. & Prange, R. Chaperone action in the posttranslational topological reorientation of the hepatitis B virus large envelope protein: implications for translocational regulation. Proc. Natl Acad. Sci. USA 100, 5199–5204 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Graschopf, A. & Bläsi, U. Molecular function of the dual-start motif in the λ S holin. Mol. Microbiol. 33, 569–582 (1999).

    Article  CAS  PubMed  Google Scholar 

  64. Cocquerel, L. et al. Topological changes in the transmembrane domains of hepatitis C virus envelope glycoproteins. EMBO J. 21, 2893–2902 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wang, X. Y., Bogdanov, M. & Dowhan, W. Topology of polytopic membrane protein subdomains is dictated by membrane phospholipid composition. EMBO J. 21, 5673–5681 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Bogdanov, M., Heacock, P. N. & Dowhan, W. A polytopic membrane protein displays a reversible topology dependent on membrane lipid composition. EMBO J. 21, 2107–2116 (2002). Shows that changes in lipid composition can reversibly affect membrane-protein topology.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhang, W., Campbell, H. A., King, S. C. & Dowhan, W. Phospholipids as determinants of membrane protein topology. Phosphatidylethanolamine is required for the proper topological organization of the γ-aminobutyric acid permease (GabP) of Escherichia coli. J. Biol. Chem. 280, 26032–26038 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Zhang, W., Bogdanov, M., Pi, J., Pittard, A. J. & Dowhan, W. Reversible topological organization within a polytopic membrane protein is governed by a change in membrane phospholipid composition. J. Biol. Chem. 278, 50128–50135 (2003).

    Article  CAS  PubMed  Google Scholar 

  69. Xie, J., Bogdanov, M., Heacock, P. & Dowhan, W. Phosphatidylethanolamine and monoglucosyldiacyl glycerol are interchangeable in supporting topogenesis and function of the polytopic membrane protein lactose permease. J. Biol. Chem. 281, 19172–19178 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. van Klompenburg, W., Nilsson, I. M., von Heijne, G. & de Kruijff, B. Anionic phosholipids are determinants of membrane protein topology. EMBO J. 16, 4261–4266 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Andersson, H. & von Heijne, G. Membrane protein topology: Effects of ΔμH+ on the translocation of charged residues explain the 'positive inside' rule. EMBO J. 13, 2267–2272 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Goder, V., Junne, T. & Spiess, M. Sec61p contributes to signal sequence orientation according to the positive-inside rule. Mol. Biol. Cell 15, 1470–1478 (2004). The first demonstration that specific residues in Sec61α can influence membrane-protein topology.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Shimizu, T., Mitsuke, H., Noto, K. & Arai, M. Internal gene duplication in the evolution of prokaryotic transmembrane proteins. J. Mol. Biol. 339, 1–15 (2004). The first systematic survey of membrane-protein-topology evolution.

    Article  CAS  PubMed  Google Scholar 

  74. Murata, K. et al. Structural determinants of water permeation through aquaporin-1. Nature 407, 599–605 (2000).

    Article  CAS  PubMed  Google Scholar 

  75. Dawson, R. J. P. & Locher, K. P. Structure of a bacterial multidrug ABC transporter. Nature 443, 180–185 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Liu, Y., Gerstein, M. & Engelman, D. M. Transmembrane protein domains rarely use covalent domain recombination as an evolutionary mechanism. Proc. Natl Acad. Sci. USA 101, 3495–3497 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Bernsel, A. & von Heijne, G. Improved membrane protein topology prediction by domain assignments. Protein Sci. 14, 1723–1728 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. von Heijne, G. Control of topology and mode of assembly of a polytopic membrane protein by positively charged residues. Nature 341, 456–458 (1989).

    Article  CAS  PubMed  Google Scholar 

  79. Nilsson, I. M. & von Heijne, G. Fine-tuning the topology of a polytopic membrane protein. Role of positively and negatively charged residues. Cell 62, 1135–1141 (1990).

    Article  CAS  PubMed  Google Scholar 

  80. Butler, P. J., Ubarretxena-Belandia, I., Warne, T. & Tate, C. G. The Escherichia coli multidrug transporter EmrE is a dimer in the detergent-solubilised state. J. Mol. Biol. 340, 797–808 (2004).

    Article  CAS  PubMed  Google Scholar 

  81. Nishino, K. & Yamaguchi, A. Analysis of a complete library of putative drug transporter genes in Escherichia coli. J. Bacteriol. 183, 5803–5812 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Chen, G. Q., Cui, C., Mayer, M. L. & Gouaux, E. Functional characterization of a potassium-selective prokaryotic glutamate receptor. Nature 402, 817–821 (1999).

    Article  CAS  PubMed  Google Scholar 

  83. Grigorieff, N., Ceska, T. A., Downing, K. H., Baldwin, J. M. & Henderson, R. Electron-crystallographic refinement of the structure of bacteriorhodopsin. J. Mol. Biol. 259, 393–421 (1996).

    Article  CAS  PubMed  Google Scholar 

  84. Bowie, U. J., Flip-flopping membrane proteins. Nature Struct. Mol. Biol. 13, 94–96 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Gunnar von Heijne is supported by grants from the Swedish Foundation for Strategic Research, the Marianne and Marcus Wallenberg Foundation, the Swedish Cancer Foundation, the Swedish Research Council and the European Commission (BioSapiens).

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Supplementary information

Supplementary information S1 (movie)

S1 (movie) | Bacteriorhodopsin. The structure of bacteriorhodopsin1 (Protein Data Bank accession code 2BRD). The seven transmembrane helices are shown in purple, the light-absorbing retinal is shown in green and positively charged residues are shown in yellow (note the higher number of positively charged residues on the cytoplasmic side, which is at the base of the structure). This movie was made using the Visual Molecular Dynamics software2 (www.ks.uiuc.edu/Research/vmd). (MPG 2371 kb)

References

1. Grigorieff, N., Ceska, T. A., Downing, K. H., Baldwin, J. M. & Henderson, R. Electroncrystallographic refinement of the structure of bacteriorhodopsin. J. Mol. Biol. 259, 393–421 (1996).

2. Humphrey, W., Dalke, A. & Schulten, K. VMD - Visual Molecular Dynamics. J. Mol. Graphics 14, 33–38 (1996).

Supplementary information S2 (movie)

S2 (movie) | Escherichia coli ClC Cl/H+ antiporter. The structure of the E. coli ClC Cl/H+ antiporter1 (Protein Data Bank accession code 1KPK). The two subunits in the homodimer are shown in red and blue. Chloride ions are shown in yellow. This movie was made using the Visual Molecular Dynamics software2 (www.ks.uiuc.edu/Research/vmd). (MPG 2870 kb)

References

1. Dutzler, R., Campbell, E. B., Cadene, M., Chait, B. T. & MacKinnon, R. X-ray structure of a ClC chloride channel at 3.0 Å reveals the molecular basis of anion selectivity. Nature 415, 287–294 (2002).

2. Humphrey, W., Dalke, A. & Schulten, K. VMD - Visual Molecular Dynamics. J. Mol. Graphics 14, 33–38 (1996).

Supplementary information S3 (movie)

S3 (movie) | Bovine Ca2+-ATPase. Conformation changes in Ca2+-ATPase for the transitions E2 → E1·2Ca2+ → E1·ATP → E1P·ADP → E1P → E2P, based on crystal structures of the different intermediate states. The cytoplasmic actuator, nucleotide binding and phosphorylation domains are shown in blue, dark green and light green, respectively. Note the large conformational changes in the transmembrane domain during the reaction cycle. This movie was reproduced with permission from REF. 1. (MOV 1528 kb)

References

1. Toyoshima, C., Nomura, H. & Tsuda, T. Lumenal gating mechanism revealed in calcium pump crystal structures with phosphate analogues. Nature 432, 361–368 (2004).

Supplementary information S4 (movie)

S4 (movie) | The candidate dual-topology protein EmrE from Escherichia coli. The structure of EmrE (REF 1) (Protein Data Bank accession code 2F2M) is shown with the two identical, but oppositely orientated, chains coloured red and blue. The strictly conserved Glu14 residues are shown in green, and the positively charged residues in one of the two chains are shown in yellow. This movie was made using the Visual Molecular Dynamics software2 (www.ks.uiuc.edu/Research/vmd) (MPG 1908 kb)

Reference

1. Pornillos, O., Chen, Y. J., Chen, A. P. & Chang, G. X-ray structure of the EmrE multidrug transporter in complex with a substrate. Science 310, 1950–1953 (2005).

2. Humphrey, W., Dalke, A. & Schulten, K. VMD - Visual Molecular Dynamics. J. Mol. Graphics 14, 33–38 (1996).

Related links

Related links

DATABASES

Pfam

DUF606

Protein Data Bank

1KPK

1T5S

2BRD

2F2M

FURTHER INFORMATION

Gunnar von Heijne's homepage

Center for Biomembrane Research

Membrane Protein Resources

Visual Molecular Dynamics software

Glossary

Topology

A specification of the number of transmembrane helices and their in and/or out orientations across the membrane in a membrane protein.

Fold space

The abstract space of all protein folds.

'Knobs-into-holes' geometry

The classic mode of helix–helix packing in which side-chains on one helix fit into spaces between side chains on the opposite helix.

Retinal

The light-sensitive cofactor in bacteriorhodopsin that absorbs photons and triggers a conformational change in the protein.

Electrochemical gradient

The combined pH and electrostatic gradient across a membrane.

S4 transmembrane helix

A positively charged transmembrane helix that forms part of the voltage-sensor domain in voltage-dependent ion channels.

Helical hairpin

A pair of closely spaced transmembrane helices that is connected by a short extracytoplasmic loop.

V-type ATPase

Ion-pumping ATP synthase located in intracellular organelles.

Connexin channel

A component of gap junctions.

Gap junction

A structure that connects neighbouring cells and allows ions and small molecules to pass between cells.

Scrapie prion protein

An aggregation-prone protein that causes the Scrapie disease in sheep and goats.

Signal peptide

An N-terminal extension on secretory proteins that serves to target a protein to the Sec61 translocon.

Lipid flip–flop

The process whereby a lipid molecule flips between the two leaflets of a lipid bilayer.

Polyprotein

Proteins made as a single polypeptide chain that is cleaved into smaller proteins by cellular proteases.

Domain recombination

An evolutionary process in which pre-existing protein domains are fused in new combinations, creating multidomain, multifunctional polypeptides.

Rights and permissions

Reprints and permissions

About this article

Cite this article

von Heijne, G. Membrane-protein topology. Nat Rev Mol Cell Biol 7, 909–918 (2006). https://doi.org/10.1038/nrm2063

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2063

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing