Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Thinking quantitatively about transcriptional regulation

Key Points

  • Transcription at the operon level is discussed as a regulatory mechanism, and can be divided into two distinct phases: initiation and elongation. Initiation differs significantly between prokaryotes and eukaryotes, whereas elongation is very similar.

  • Elongation, and its regulatory control, can be described in thermodynamic and kinetic terms, and many of these mechanisms can now be considered in terms of defined structural interactions within the RNA polymerase of the transcription complex and with its various transcriptional cofactors.

  • The transcription complex can choose between several alternative reaction pathways at each template position. These pathways include continued elongation, as well as pyrophosphorolysis, editing, termination, and short- and long-term pausing.

  • These potential reaction pathways are in kinetic competition with one another, and the outcome of this competition at any given template position can be described in terms of the relative heights of the free energy of activation barriers that lead into these various pathways.

  • Transcription factors can selectively modulate these relative barrier heights, and can therefore potentially redirect transcription down any of these different pathways. Elongation is the default pathway, and transcription pauses of defined lengths and various structural origins are generally required to allow other reaction pathways to be used.

  • Much mechanistic and structural information is available concerning the elongation, editing, termination and pyrophosphorolysis pathways, and how the elongation complex chooses between them.

  • Understanding the mechanisms of regulation of transcript elongation in Escherichia coli can function as a model for transcriptional control in higher organisms and in various developmental and disease states.

Abstract

By thinking about the chemical and physical mechanisms that are involved in the stepwise elongation of RNA transcripts, we can begin to understand the way that these mechanisms are controlled within the cell to reflect the different requirements for transcription that are posed by various metabolic, developmental and disease states. Here, we focus on the mechanistic details of the single-nucleotide addition (or excision) cycle in the transcription process, as this is the level at which many regulatory mechanisms function and can be explained in quantitative terms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The transcription cycle.
Figure 2: The thermodynamic stability of the elongation complex.
Figure 3: The elongation process in structural terms.
Figure 4: Alternative reaction pathways that are available to RNA polymerase.
Figure 5: Kinetic regulation of transcription elongation.
Figure 6: RNA polymerase can function as a decoupled helicase.
Figure 7: Termination and antitermination.

Similar content being viewed by others

References

  1. Toulme, F. et al. GreA and GreB proteins revive backtracked RNA polymerase in vivo by promoting transcript trimming. EMBO J. 19, 6853–6859 (2000).

    Article  CAS  Google Scholar 

  2. Mosrin-Huaman, C., Turnbough, C. L. Jr & Rahmouni, A. R. Translocation of Escherichia coli RNA polymerase against a protein roadblock in vivo highlights a passive sliding mechanism for transcript elongation. Mol. Microbiol. 51, 1471–1481 (2004).

    Article  CAS  Google Scholar 

  3. Bar-Nahum, G. & Nudler, E. Isolation and characterization of σ70-retaining transcription elongation complexes from Escherichia coli. Cell 106, 443–451 (2001).

    Article  CAS  Google Scholar 

  4. Mukhopadhyay, J. et al. Translocation of σ70 with RNA polymerase during transcription: fluorescence resonance energy transfer assay for movement relative to DNA. Cell 106, 453–463 (2001).

    Article  CAS  Google Scholar 

  5. von Hippel, P. H. Helicases become mechanistically simpler and functionally more complex. Nature Struct. Mol. Biol. 11, 494–496 (2004).

    Article  CAS  Google Scholar 

  6. von Hippel, P. H. & Delagoutte, E. A general model for nucleic acid helicases and their 'coupling' within macromolecular machines. Cell 104, 177–190 (2001).

    Article  CAS  Google Scholar 

  7. Delagoutte, E. & von Hippel, P. H. Helicase mechanisms and the coupling of helicases within macromolecular machines. Part II: integration of helicases into cellular processes. Q. Rev. Biophys. 36, 1–69 (2003).

    Article  CAS  Google Scholar 

  8. Zaychikov, E., Denissova, L. & Heumann, H. Translocation of the Escherichia coli transcription complex observed in the registers 11 to 20: 'jumping' of RNA polymerase and asymmetric expansion and contraction of the 'transcription bubble'. Proc. Natl Acad. Sci. USA 92, 1739–1743 (1995).

    Article  CAS  Google Scholar 

  9. Nudler, E., Avetissova, E., Markovtsov, V. & Goldfarb, A. Transcription processivity: protein–DNA interactions holding together the elongation complex. Science 273, 211–217 (1996).

    Article  CAS  Google Scholar 

  10. Nudler, E., Gusarov, I., Avetissova, E., Kozlov, M. & Goldfarb, A. Spatial organization of transcription elongation complex in Escherichia coli. Science 281, 424–428 (1998).

    Article  CAS  Google Scholar 

  11. Korzheva, N. et al. A structural model of transcription elongation. Science 289, 619–625 (2000).

    Article  CAS  Google Scholar 

  12. Nudler, E., Mustaev, A., Lukhtanov, E. & Goldfarb, A. The RNA–DNA hybrid maintains the register of transcription by preventing backtracking of RNA polymerase. Cell 89, 33–41 (1997).

    Article  CAS  Google Scholar 

  13. Sidorenkov, I., Komissarova, N. & Kashlev, M. Crucial role of the RNA:DNA hybrid in the processivity of transcription. Mol. Cell 2, 55–64 (1998).

    Article  CAS  Google Scholar 

  14. Monforte, J. A., Kahn, J. D. & Hearst, J. E. RNA folding during transcription by Escherichia coli RNA polymerase analyzed by RNA self-cleavage. Biochemistry 29, 7882–7890 (1990).

    Article  CAS  Google Scholar 

  15. Reeder, T. C. & Hawley, D. K. Promoter proximal sequences modulate RNA polymerase II elongation by a novel mechanism. Cell 87, 767–777 (1996).

    Article  CAS  Google Scholar 

  16. Komissarova, N. & Kashlev, M. Transcriptional arrest: Escherichia coli RNA polymerase translocates backward, leaving the 3′ end of the RNA intact and extruded. Proc. Natl Acad. Sci. USA 94, 1755–1760 (1997).

    Article  CAS  Google Scholar 

  17. Komissarova, N. & Kashlev, M. Functional topography of nascent RNA in elongation intermediates of RNA polymerase. Proc. Natl Acad. Sci. USA 95, 14699–14704 (1998).

    Article  CAS  Google Scholar 

  18. Yager, T. D. & von Hippel, P. H. A thermodynamic analysis of RNA transcript elongation and termination in Escherichia coli. Biochemistry 30, 1097–1118 (1991). Presents a thermodynamic analysis of the formation of transcription complexes.

    Article  CAS  Google Scholar 

  19. Pasman, Z. & von Hippel, P. H. Active Escherichia coli transcription elongation complexes are functionally homogeneous. J. Mol. Biol. 322, 505–519 (2002).

    Article  CAS  Google Scholar 

  20. Zhang, G. et al. Crystal structure of Thermus aquaticus core RNA polymerase at 3.3 Å resolution. Cell 98, 811–824 (1999).

    Article  CAS  Google Scholar 

  21. Ebright, R. H. RNA polymerase: structural similarities between bacterial RNA polymerase and eukaryotic RNA polymerase II. J. Mol. Biol. 304, 687–698 (2000).

    Article  CAS  Google Scholar 

  22. Markov, D., Naryshkina, T., Mustaev, A. & Severinov, K. A zinc-binding site in the largest subunit of DNA-dependent RNA polymerase is involved in enzyme assembly. Genes Dev. 13, 2439–2448 (1999).

    Article  CAS  Google Scholar 

  23. Vassylyev, D. G. et al. Crystal structure of a bacterial RNA polymerase holoenzyme at 2.6 Å resolution. Nature 417, 712–719 (2002).

    Article  CAS  Google Scholar 

  24. King, R. A., Markov, D., Sen, R., Severinov, K. & Weisberg, R. A. A conserved zinc binding domain in the largest subunit of DNA-dependent RNA polymerase modulates intrinsic transcription termination and antitermination but does not stabilize the elongation complex. J. Mol. Biol. 342, 1143–1154 (2004).

    Article  CAS  Google Scholar 

  25. Gnatt, A. L., Cramer, P., Fu, J., Bushnell, D. A. & Kornberg, R. D. Structural basis of transcription: an RNA polymerase II elongation complex at 3.3 Å resolution. Science 292, 1876–1882 (2001). Describes the structure of an elongating RNA polymerase including the transcription bubble, the RNA–DNA hybrid and the RNA-polymerase active site.

    Article  CAS  Google Scholar 

  26. Epshtein, V. et al. Swing-gate model of nucleotide entry into the RNA polymerase active center. Mol. Cell 10, 623–634 (2002).

    Article  CAS  Google Scholar 

  27. Westover, K. D., Bushnell, D. A. & Kornberg, R. D. Structural basis of transcription: separation of RNA from DNA by RNA polymerase II. Science 303, 1014–1016 (2004).

    Article  CAS  Google Scholar 

  28. Cramer, P. et al. Architecture of RNA polymerase II and implications for the transcription mechanism. Science 288, 640–649 (2000).

    Article  CAS  Google Scholar 

  29. Opalka, N. et al. Structure and function of the transcription elongation factor GreB bound to bacterial RNA polymerase. Cell 114, 335–345 (2003). Structural demonstration of the binding of GreB to RNA polymerase and the mechanism of RNA-chain cleavage during editing.

    Article  CAS  Google Scholar 

  30. Cramer, P., Bushnell, D. A. & Kornberg, R. D. Structural basis of transcription: RNA polymerase II at 2.8 angstrom resolution. Science 292, 1863–1876 (2001).

    Article  CAS  Google Scholar 

  31. Sosunov, V. et al. Unified two-metal mechanism of RNA synthesis and degradation by RNA polymerase. EMBO J. 22, 2234–2244 (2003). Provides evidence to support a two-metal-ion active site in RNA polymerase.

    Article  CAS  Google Scholar 

  32. Kuznedelov, K., Korzheva, N., Mustaev, A. & Severinov, K. Structure-based analysis of RNA polymerase function: the largest subunit's rudder contributes critically to elongation complex stability and is not involved in the maintenance of RNA–DNA hybrid length. EMBO J. 21, 1369–1378 (2002).

    Article  CAS  Google Scholar 

  33. Toulokhonov, I. & Landick, R. The flap domain is required for pause RNA hairpin inhibition of catalysis by RNA polymerase and can modulate intrinsic termination. Mol. Cell 12, 1125–1136 (2003).

    Article  CAS  Google Scholar 

  34. von Hippel, P. H. & Delagoutte, E. Macromolecular complexes that unwind nucleic acids. Bioessays 25, 1168–1177 (2003).

    Article  CAS  Google Scholar 

  35. Erie, D. A., Yager, T. D. & von Hippel, P. H. The single-nucleotide addition cycle in transcription: a biophysical and biochemical perspective. Annu. Rev. Biophys. Biomol. Struct. 21, 379–415 (1992). Provides mechanistic details of the single-nucleotide-addition and -excision cycle.

    Article  CAS  Google Scholar 

  36. Hopfield, J. J. Kinetic proofreading: a new mechanism for reducing errors in biosynthetic processes requiring high specificity. Proc. Natl Acad. Sci. USA 71, 4135–4139 (1974).

    Article  CAS  Google Scholar 

  37. Komissarova, N. & Kashlev, M. RNA polymerase switches between inactivated and activated states by translocating back and forth along the DNA and the RNA. J. Biol. Chem. 272, 15329–15338 (1997).

    Article  CAS  Google Scholar 

  38. Guajardo, R., Lopez, P., Dreyfus, M. & Sousa, R. NTP concentration effects on initial transcription by T7 RNAP indicate that translocation occurs through passive sliding and reveal that divergent promoters have distinct NTP concentration requirements for productive initiation. J. Mol. Biol. 281, 777–792 (1998).

    Article  CAS  Google Scholar 

  39. Bai, L., Shundrovsky, A. & Wang, M. D. Sequence-dependent kinetic model for transcription elongation by RNA polymerase. J. Mol. Biol. 344, 335–349 (2004).

    Article  CAS  Google Scholar 

  40. Erie, D. A., Hajiseyedjavadi, O., Young, M. C. & von Hippel, P. H. Multiple RNA polymerase conformations and GreA: control of the fidelity of transcription. Science 262, 867–873 (1993).

    Article  CAS  Google Scholar 

  41. Thomas, M. J., Platas, A. A. & Hawley, D. K. Transcriptional fidelity and proofreading by RNA polymerase II. Cell 93, 627–637 (1998).

    Article  CAS  Google Scholar 

  42. Borukhov, S., Polyakov, A., Nikiforov, V. & Goldfarb, A. GreA protein: a transcription elongation factor from Escherichia coli. Proc. Natl Acad. Sci. USA 89, 8899–8902 (1992).

    Article  CAS  Google Scholar 

  43. Borukhov, S., Sagitov, V. & Goldfarb, A. Transcript cleavage factors from E. coli. Cell 72, 459–466 (1993).

    Article  CAS  Google Scholar 

  44. Orlova, M., Newlands, J., Das, A., Goldfarb, A. & Borukhov, S. Intrinsic transcript cleavage activity of RNA polymerase. Proc. Natl Acad. Sci. USA 92, 4596–4600 (1995).

    Article  CAS  Google Scholar 

  45. Laptenko, O., Lee, J., Lomakin, I. & Borukhov, S. Transcript cleavage factors GreA and GreB act as transient catalytic components of RNA polymerase. EMBO J. 22, 6322–6334 (2003).

    Article  CAS  Google Scholar 

  46. Sosunova, E. et al. Donation of catalytic residues to RNA polymerase active center by transcription factor Gre. Proc. Natl Acad. Sci. USA 100, 15469–15474 (2003).

    Article  CAS  Google Scholar 

  47. Neuman, K. C., Abbondanzieri, E. A., Landick, R., Gelles, J. & Block, S. M. Ubiquitous transcriptional pausing is independent of RNA polymerase backtracking. Cell 115, 437–447 (2003). Discusses the role of pauses in the regulation of transcription.

    Article  CAS  Google Scholar 

  48. Shaevitz, J. W., Abbondanzieri, E. A., Landick, R. & Block, S. M. Backtracking by single RNA polymerase molecules observed at near-base-pair resolution. Nature 426, 684–687 (2003).

    Article  CAS  Google Scholar 

  49. Artsimovitch, I. & Landick, R. Pausing by bacterial RNA polymerase is mediated by mechanistically distinct classes of signals. Proc. Natl Acad. Sci. USA 97, 7090–7095 (2000).

    Article  CAS  Google Scholar 

  50. Martin, F. H. & Tinoco, I. Jr. DNA–RNA hybrid duplexes containing oligo(dA:rU) sequences are exceptionally unstable and may facilitate termination of transcription. Nucleic Acids Res. 8, 2295–2299 (1980).

    Article  CAS  Google Scholar 

  51. Wilson, K. S. & von Hippel, P. H. Stability of Escherichia coli transcription complexes near an intrinsic terminator. J. Mol. Biol. 244, 36–51 (1994).

    Article  CAS  Google Scholar 

  52. Toulokhonov, I., Artsimovitch, I. & Landick, R. Allosteric control of RNA polymerase by a site that contacts nascent RNA hairpins. Science 292, 730–733 (2001).

    Article  CAS  Google Scholar 

  53. Gusarov, I. & Nudler, E. The mechanism of intrinsic transcription termination. Mol. Cell 3, 495–504 (1999).

    Article  CAS  Google Scholar 

  54. Komissarova, N., Becker, J., Solter, S., Kireeva, M. & Kashlev, M. Shortening of RNA:DNA hybrid in the elongation complex of RNA polymerase is a prerequisite for transcription termination. Mol. Cell 10, 1151–1162 (2002).

    Article  CAS  Google Scholar 

  55. Yarnell, W. S. & Roberts, J. W. Mechanism of intrinsic transcription termination and antitermination. Science 284, 611–615 (1999).

    Article  CAS  Google Scholar 

  56. Ryder, A. M. & Roberts, J. W. Role of the non-template strand of the elongation bubble in intrinsic transcription termination. J. Mol. Biol. 334, 205–213 (2003).

    Article  CAS  Google Scholar 

  57. Santangelo, T. J., Mooney, R. A., Landick, R. & Roberts, J. W. RNA polymerase mutations that impair conversion to a termination-resistant complex by Q antiterminator proteins. Genes Dev. 17, 1281–1292 (2003).

    Article  CAS  Google Scholar 

  58. Brennan, C. A., Dombroski, A. J. & Platt, T. Transcription termination factor rho is an RNA–DNA helicase. Cell 48, 945–952 (1987).

    Article  CAS  Google Scholar 

  59. Jin, D. J., Burgess, R. R., Richardson, J. P. & Gross, C. A. Termination efficiency at rho-dependent terminators depends on kinetic coupling between RNA polymerase and rho. Proc. Natl Acad. Sci. USA 89, 1453–1457 (1992).

    Article  CAS  Google Scholar 

  60. Walstrom, K. M., Dozono, J. M., Robic, S. & von Hippel, P. H. Kinetics of the RNA–DNA helicase activity of Escherichia coli transcription termination factor rho. 1. Characterization and analysis of the reaction. Biochemistry 36, 7980–7992 (1997).

    Article  CAS  Google Scholar 

  61. Walstrom, K. M., Dozono, J. M. & von Hippel, P. H. Kinetics of the RNA–DNA helicase activity of Escherichia coli transcription termination factor rho. 2. Processivity, ATP consumption, and RNA binding. Biochemistry 36, 7993–8004 (1997).

    Article  CAS  Google Scholar 

  62. Zhu, A. Q. & von Hippel, P. H. Rho-dependent termination within the trp t′ terminator. II. Effects of kinetic competition and rho processivity. Biochemistry 37, 11215–11222 (1998).

    Article  CAS  Google Scholar 

  63. Zhu, A. Q. & von Hippel, P. H. Rho-dependent termination within the trp t′ terminator. I. Effects of rho loading and template sequence. Biochemistry 37, 11202–11214 (1998).

    Article  CAS  Google Scholar 

  64. Walmacq, C., Rahmouni, A. R. & Boudvillain, M. Influence of substrate composition on the helicase activity of transcription termination factor Rho: reduced processivity of Rho hexamers during unwinding of RNA–DNA hybrid regions. J. Mol. Biol. 342, 403–420 (2004).

    Article  CAS  Google Scholar 

  65. Greenblatt, J., McLimont, M. & Hanly, S. Termination of transcription by nusA gene protein of Escherichia coli. Nature 292, 215–220 (1981).

    Article  CAS  Google Scholar 

  66. Li, J., Horwitz, R., McCracken, S. & Greenblatt, J. NusG, a new Escherichia coli elongation factor involved in transcriptional antitermination by the N protein of phage λ. J. Biol. Chem. 267, 6012–6019 (1992).

    CAS  PubMed  Google Scholar 

  67. Sullivan, S. L. & Gottesman, M. E. Requirement for E. coli NusG protein in factor-dependent transcription termination. Cell 68, 989–994 (1992).

    Article  CAS  Google Scholar 

  68. Nehrke, K. W., Zalatan, F. & Platt, T. NusG alters rho-dependent termination of transcription in vitro independent of kinetic coupling. Gene Expr. 3, 119–133 (1993).

    CAS  PubMed  Google Scholar 

  69. Mason, S. W. & Greenblatt, J. Assembly of transcription elongation complexes containing the N protein of phage λ and the Escherichia coli elongation factors NusA, NusB, NusG, and S10. Genes Dev. 5, 1504–1512 (1991).

    Article  CAS  Google Scholar 

  70. Das, A. et al. Components of multiprotein–RNA complex that controls transcription elongation in Escherichia coli phage λ. Methods Enzymol. 274, 374–402 (1996).

    Article  CAS  Google Scholar 

  71. Nodwell, J. R. & Greenblatt, J. Recognition of boxA antiterminator RNA by the E. coli antitermination factors NusB and ribosomal protein S10. Cell 72, 261–268 (1993).

    Article  CAS  Google Scholar 

  72. Torres, M., Condon, C., Balada, J. M., Squires, C. & Squires, C. L. Ribosomal protein S4 is a transcription factor with properties remarkably similar to NusA, a protein involved in both non-ribosomal and ribosomal RNA antitermination. EMBO J. 20, 3811–3820 (2001).

    Article  CAS  Google Scholar 

  73. Vogel, U. & Jensen, K. F. NusA is required for ribosomal antitermination and for modulation of the transcription elongation rate of both antiterminated RNA and mRNA. J. Biol. Chem. 272, 12265–12271 (1997).

    Article  CAS  Google Scholar 

  74. Glasstone, S., Laidler, K. & Eyring, H. The Theory of Rate Processes (McGraw–Hill, New York, 1941).

    Google Scholar 

  75. von Hippel, P. H. & Yager, T. D. Transcript elongation and termination are competitive kinetic processes. Proc. Natl Acad. Sci. USA 88, 2307–2311 (1991). Sets up the transition-state approach to transcription kinetics.

    Article  CAS  Google Scholar 

  76. von Hippel, P. H. & Pasman, Z. Reaction pathways in transcript elongation. Biophys. Chem. 101–102, 401–423 (2002). Provides a detailed discussion of the alternative reaction pathways in transcription.

    Article  Google Scholar 

  77. Rees, W., Weitzel, S., Das, A. & von Hippel, P. Regulation of the elongation–termination decision at intrinsic terminators by antitermination protein N of phage λ. J. Mol. Biol. 273, 797–893 (1997).

    Article  CAS  Google Scholar 

  78. Levin, J. R. & Chamberlin, M. J. Mapping and characterization of transcriptional pause sites in the early genetic region of bacteriophage T7. J. Mol. Biol. 196, 61–84 (1987).

    Article  CAS  Google Scholar 

  79. Arndt, K. M. & Chamberlin, M. J. Transcription termination in Escherichia coli. Measurement of the rate of enzyme release from Rho-independent terminators. J. Mol. Biol. 202, 271–285 (1988).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to our colleagues at the University of Oregon and elsewhere for many stimulating discussions of the concepts presented here. The preparation of this article was supported, in part, by National Institutes of Health research grants (to P.H.v.H.) and by an American Heart Association Postdoctoral Fellowship (to S.J.G.). P.H.v.H. is an American Cancer Society Research Professor of Chemistry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter H. von Hippel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Swiss-Prot

α

β

β′

ω

GreA

GreB

NusA

NusB

NusE

NusG

S4

Protein data bank

1HQM

Saccharomyces genome database

SII

FURTHER INFORMATION

Protein Data Bank

Glossary

PROMOTER

A DNA-binding site for RNA polymerase at which gene transcription can be initiated.

TERMINATION

A reaction that occurs at terminator sites on the DNA template and that stops transcription by dissociating the transcription complex and releasing the nascent RNA into solution.

TRANSCRIPTION BUBBLE

A stretch of 12–14 bp that is melted within the dsDNA as a consequence of transcription-complex formation. The transcription bubble exposes the DNA template strand that is then copied by RNA polymerase to form complementary RNA.

RNA–DNA HYBRID

The double-stranded, 8–9-bp helix that forms within the transcription bubble when the 3′ end of the nascent RNA transcript interacts with the complementary sequence of the template.

SIGMA FACTOR

(σ factor). A promoter-specific transcription factor in prokaryotes that binds to core RNA polymerase and directs the binding of the resulting holoenzyme to a specific promoter or family of promoters.

FIDELITY

A measure of the accuracy with which the template sequence is copied into the complementary nascent RNA or DNA strand.

PROCESSIVITY

A measure of the average number of nucleotides that a template-dependent polymerase incorporates into a growing RNA or DNA chain before dissociating from the template DNA. Regulation of the processivity of a polymerase might involve interactions of regulatory factors with its sliding-clamp domain.

EDITING

The process of correcting a misincorporation event by cleaving a short oligonucleotide sequence that contains the misincorporated residue from the 3′ end of the elongating transcript.

PYROPHOSPHOROLYSIS

A chemical process that results in the sequential removal of single nucleotides from the 3′ end of the nascent RNA. It represents the direct chemical reversal of the single-nucleotide-addition reaction.

ANTITERMINATION

A process that decreases termination efficiency at a given terminator by increasing the rate of transcription by the RNA polymerase or by stabilizing the elongation complex, or both.

SLIDING CLAMP

A domain or protein ring that forms part of the DNA-replication complex. It holds (or 'clamps') the replication polymerase to the DNA template at the primer–template junction within the replication fork. In transcription, this function is carried out by the 'pincer' domain of the 'crab-claw' region of the RNA polymerase. These pincers clamp the dsDNA downstream of the moving transcription bubble and control the processivity of the transcription complex.

KINETIC COMPETITION

The competition that is seen between different reactions during a process that can proceed down several bifurcating reaction pathways, for which the outcome depends on the relative rate constants of the potentially competing reactions. Alteration (for example, by transcription-factor binding) of the relative heights of the free energy of activation barriers that lead into the various reaction pathways can change the outcome of the process.

FREE ENERGY OF ACTIVATION BARRIER

An idea derived from transition-state theory that defines the input of free energy that is needed to allow a given reaction to proceed.

BOLTZMANN DISTRIBUTION

Describes how the total energy (or free energy, in this case) that is available for a reaction is divided among the population of molecules or pathways that are available within the system.

ISOENERGETIC REACTION PROCESS

A process in which the beginning and ending states have equivalent energies (or free energies).

SLIDING–ZIPPERING

The diffusion-driven process through which the elongation complex — which comprises the transcription bubble, the RNA–DNA hybrid and the RNA polymerase — translocates backwards and forwards along (and through) the DNA genome.

BACK-SLIDING

The process by which RNA polymerase might become detached from the 3′ end of the elongating RNA, and is translocated 'backwards' (upstream) by diffusion along the nucleic-acid framework towards the promoter, in response to regulatory signals or events during transcription elongation.

EXONUCLEASE

An enzyme that catalyses the cleavage of a single residue from the end of an oligonucletide strand. The term 'exonuclease-like' indicates that the enzyme might remove more than one residue at a time from the end of the chain.

MISINCORPORATION

The addition of an incorrect (as defined by the complementary DNA template) nucleotide at the 3′ end of the nascent transcript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greive, S., von Hippel, P. Thinking quantitatively about transcriptional regulation. Nat Rev Mol Cell Biol 6, 221–232 (2005). https://doi.org/10.1038/nrm1588

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm1588

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing