Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cytoskeletal regulation: rich in lipids

Key Points

  • Many changes in the structure and movements of cells depend on rearrangements of the cytoskeleton. The cytoskeleton is a dynamic system of protein filaments that is regulated by dozens of proteins that are, in turn, regulated by phosphoinositides. Phosphoinositides comprise a group of anionic lipids that are generated by phosphorylation of the phospholipid phosphatidylinositol. Actin filaments are the cytoskeletal elements that are most often altered by phosphoinositide signalling.

  • Phosphoinositide-binding sites on cytoskeleton-regulating proteins are often flexible, cationic regions that allow large hinge-like transitions in the protein structure once the phosphoinositide, usually phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2), binds. The conformational change that is caused by phosphoinositides can either activate or inactivate the effects of the protein on the cytoskeleton or, in some cases, allow the protein to link the cytoskeleton to the cell membrane.

  • Manipulating phosphoinositide levels in a cell — for example, by altering the expression of enzymes that form or remove them — causes changes in the overall actin architecture of the cell. These changes are consistent with data defining how individual actin-binding-protein functions depend on phosphoinositides in vivo. Some human diseases in which cells have an abnormal cytoskeleton are associated with mutations in phosphoinositide-remodelling enzymes.

  • Soluble proteins that regulate cytoskeletal assembly do so by signalling to lipids like phosphoinositides, which are embedded in cell membranes. This allows local activation of force-producing reactions such as actin assembly to occur at the cytosol–membrane interface, where they are optimally positioned for cell motility.

  • Biochemical data and imaging of fluorescent markers for specific phosphoinositides indicate that phosphoinositides are not uniformly distributed through cell membranes but, rather, are localized in small patches or in spatial gradients. Mechanisms to account for their localization include rapid local synthesis, clustering by interaction with cationic proteins, or a combination of hydrogen-bonding and physical interactions among the lipids themselves. Direct visualization of such hypothetical domains and the determination of how they relate to cholesterol-rich lipid rafts is an area that has seen much recent activity and controversy.

Abstract

Phosphorylated derivatives of the phospholipid phosphatidylinositol, or phosphoinositides, are implicated in many aspects of cell function. Binding of phosphoinositides that are localized within cell membranes to soluble protein ligands allows spatially selective regulation at the cytoplasm–membrane interface. Recently, studies that relate phosphoinositide production to membrane domains are converging with those that show effects of these lipids on the assembly of cellular actin, and are therefore linking membrane and cytoskeletal structures in new ways.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Triggering actin assembly by local phosphoinositide production.
Figure 2: Phosphatidylinositol phosphate kinase and membrane ruffling.
Figure 3: Activation of α-actinin by phosphatidylinositol 4,5-bisphosphate.
Figure 4: Inactivation of actin-binding function by phosphoinositides.
Figure 5: Phosphoinositide clustering.

Similar content being viewed by others

References

  1. Jamora, C. & Fuchs, E. Intercellular adhesion, signalling and the cytoskeleton. Nature Cell Biol. 4, E101–E108 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Sechi, A. S. & Wehland, J. Interplay between TCR signalling and actin cytoskeleton dynamics. Trends Immunol. 25, 257–265 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Forgacs, G., Yook, S. H., Janmey, P. A., Jeong, H. & Burd, C. G. Role of the cytoskeleton in signaling networks. J. Cell Sci. 117, 2769–2775 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Malm, B., Larsson, H. & Lindberg, U. The profilin–actin complex: further characterization of profilin and studies on the stability of the complex. J. Muscle Res. Cell Motil. 4, 569–588 (1983).

    Article  CAS  PubMed  Google Scholar 

  5. Burn, P., Rotman, A., Meyer, R. K. & Burger, M. M. Diacylglycerol in large α-actinin/actin complexes and in the cytoskeleton of activated platelets. Nature 314, 469–472 (1985).

    Article  CAS  PubMed  Google Scholar 

  6. Niggli, V., Dimitrov, D. P., Brunner, J. & Burger, M. M. Interaction of the cytoskeletal component vinculin with bilayer structures analyzed with a photoactivatable phospholipid. J. Biol. Chem. 261, 6912–6918 (1986).

    Article  CAS  PubMed  Google Scholar 

  7. Ito, S., Werth, D. K., Richert, N. D. & Pastan, I. Vinculin phosphorylation by the src kinase. Interaction of vinculin with phospholipid vesicles. J. Biol. Chem. 258, 14626–14631 (1983).

    Article  CAS  PubMed  Google Scholar 

  8. Anderson, R. A. & Marchesi, V. T. Regulation of the association of membrane skeletal protein 4.1 with glycophorin by a polyphosphoinositide. Nature 318, 295–298 (1985).

    Article  CAS  PubMed  Google Scholar 

  9. Lassing, I. & Lindberg, U. Specific interaction between phosphatidylinositol 4,5-bisphosphate and profilactin. Nature 314, 472–474 (1985).

    Article  CAS  PubMed  Google Scholar 

  10. Niggli, V. Structural properties of lipid-binding sites in cytoskeletal proteins. Trends Biochem. Sci. 26, 604–611 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Yin, H. L. & Janmey, P. A. Phosphoinositide regulation of the actin cytoskeleton. Annu. Rev. Physiol. 65, 761–789 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Hilpela, P., Vartiainen, M. K. & Lappalainen, P. Regulation of the actin cytoskeleton by PI(4,5)P2 and PI(3,4,5)P3 . Curr. Top. Microbiol. Immunol. 282, 117–163 (2004).

    CAS  PubMed  Google Scholar 

  13. Popova, J. S., Greene, A. K., Wang, J. & Rasenick, M. M. Phosphatidylinositol 4,5-bisphosphate modifies tubulin participation in phospholipase Cβ1 signaling. J. Neurosci. 22, 1668–1678 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Leterrier, J. F., Kas, J., Hartwig, J., Vegners, R. & Janmey, P. A. Mechanical effects of neurofilament cross-bridges. Modulation by phosphorylation, lipids, and interactions with F-actin. J. Biol. Chem. 271, 15687–15694 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Klopfenstein, D. R., Tomishige, M., Stuurman, N. & Vale, R. D. Role of phosphatidylinositol(4,5)bisphosphate organization in membrane transport by the Unc104 kinesin motor. Cell 109, 347–358 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Thompson, H. M., Cao, H., Chen, J., Euteneuer, U. & McNiven, M. A. Dynamin 2 binds γ-tubulin and participates in centrosome cohesion. Nature Cell Biol. 6, 335–342 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Schafer, D. A. Regulating actin dynamics at membranes: a focus on dynamin. Traffic 5, 463–469 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Krueger, E. W., Orth, J. D., Cao, H. & McNiven, M. A. A dynamin–cortactin–Arp2/3 complex mediates actin reorganization in growth factor-stimulated cells. Mol. Biol. Cell 14, 1085–1096 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zheng, J. et al. Identification of the binding site for acidic phospholipids on the PH domain of dynamin: implications for stimulation of GTPase activity. J. Mol. Biol. 255, 14–21 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. Yamamoto, M. et al. Phosphatidylinositol 4,5-bisphosphate induces actin stress-fiber formation and inhibits membrane ruffling in CV1 cells. J. Cell Biol. 152, 867–876 (2001). Showed that the stimulation of actin that was inferred from in vitro studies of protein–phosphoinositide interactions could be seen in live cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rozelle, A. L. et al. Phosphatidylinositol 4,5-bisphosphate induces actin-based movement of raft-enriched vesicles through WASP–Arp2/3. Curr. Biol. 10, 311–320 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Sakisaka, T., Itoh, T., Miura, K. & Takenawa, T. Phosphatidylinositol 4,5-bisphosphate phosphatase regulates the rearrangement of actin filaments. Mol. Cell. Biol. 17, 3841–3849 (1997). Showed that some forms of actin assembly in vivo depend on the presence of cellular PtdIns(4,5)P 2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cunningham, C. C. et al. Cell permeant polyphosphoinositide-binding peptides that block cell motility and actin assembly. J. Biol. Chem. 276, 43390–43399 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Raucher, D. et al. Phosphatidylinositol 4,5-bisphosphate functions as a second messenger that regulates cytoskeleton–plasma membrane adhesion. Cell 100, 221–228 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Miki, H., Miura, K. & Takenawa, T. N-WASP, a novel actin-depolymerizing protein, regulates the cortical cytoskeletal rearrangement in a PIP2-dependent manner downstream of tyrosine kinases. EMBO J. 15, 5326–5335 (1996).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Shibasaki, Y. et al. Massive actin polymerization induced by phosphatidylinositol-4-phosphate 5-kinase in vivo. J. Biol. Chem. 272, 7578–7581 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Kanzaki, M., Furukawa, M., Raab, W. & Pessin, J. E. Phosphatidylinositol-4,5-bisphosphate (PI4,5P2) regulates adipocyte actin dynamics and GLUT4 vesicle recycling. J. Biol. Chem. 28 April 2004 (doi:10.1074/jbc.M401443200).

  28. Tolias, K. F. et al. Type Iα phosphatidylinositol-4-phosphate 5-kinase mediates Rac-dependent actin assembly. Curr. Biol. 10, 153–156 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Weernink, P. A. et al. Activation of type I phosphatidylinositol 4-phosphate 5-kinase isoforms by the Rho GTPases, RhoA, Rac1, and Cdc42. J. Biol. Chem. 279, 7840–7849 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Takenawa, T., Itoh, T. & Fukami, K. Regulation of phosphatidylinositol 4,5-bisphosphate levels and its roles in cytoskeletal re-organization and malignant transformation. Chem. Phys. Lipids 98, 13–22 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Niebuhr, K. et al. Conversion of PtdIns(4,5)P2 into PtdIns(5)P by the S. flexneri effector IpgD reorganizes host cell morphology. EMBO J. 21, 5069–5078 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Suchy, S. F. & Nussbaum, R. L. The deficiency of PIP2 5-phosphatase in Lowe syndrome affects actin polymerization. Am. J. Hum. Genet. 71, 1420–1427 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Funaki, M., Randhawa, P. & Janmey, P. A. Separation of insulin signaling into distinct GLUT4 translocation and activation steps. Mol. Cell. Biol. (in the press).

  34. Venkateswarlu, K., Brandom, K. G. & Lawrence, J. L. Centaurin-α1 is an in vivo phosphatidylinositol 3,4,5-trisphosphate-dependent GTPase-activating protein for ARF6 that is involved in actin cytoskeleton organization. J. Biol. Chem. 279, 6205–6208 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Benesch, S. et al. Phosphatidylinositol 4,5-biphosphate (PIP2)-induced vesicle movement depends on N-WASP and involves Nck, WIP, and Grb2. J. Biol. Chem. 277, 37771–37776 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Hilgemann, D. W., Feng, S. & Nasuhoglu, C. The complex and intriguing lives of PIP2 with ion channels and transporters. Sci STKE 2001, RE19 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Corbalan-Garcia, S., Garcia-Garcia, J., Rodriguez-Alfaro, J. A. & Gomez-Fernandez, J. C. A new phosphatidylinositol 4,5-bisphosphate-binding site located in the C2 domain of protein kinase Cα. J. Biol. Chem. 278, 4972–4980 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Frech, M. et al. High affinity binding of inositol phosphates and phosphoinositides to the pleckstrin homology domain of RAC/protein kinase B and their influence on kinase activity. J. Biol. Chem. 272, 8474–8481 (1997).

    Article  CAS  PubMed  Google Scholar 

  39. Hresko, R. C., Murata, H. & Mueckler, M. Phosphoinositide-dependent kinase-2 is a distinct protein kinase enriched in a novel cytoskeletal fraction associated with adipocyte plasma membranes. J. Biol. Chem. 278, 21615–21622 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Fievet, B. T. et al. Phosphoinositide binding and phosphorylation act sequentially in the activation mechanism of ezrin. J. Cell Biol. 164, 653–659 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kwik, J. et al. Membrane cholesterol, lateral mobility, and the phosphatidylinositol 4,5-bisphosphate-dependent organization of cell actin. Proc. Natl Acad. Sci. USA 100, 13964–13969 (2003). Distribution of phosphoinositides in the cell membrane is shown to be altered by cholesterol depletion, and an associated change in mobility of actin is linked to these membrane changes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cockcroft, S. (ed.) Biology of phosphoinositides (Oxford Univ. Press, Oxford, UK, 2000).

    Google Scholar 

  43. Ma, L., Cantley, L. C., Janmey, P. A. & Kirschner, M. W. Corequirement of specific phosphoinositides and small GTP binding protein cdc42 in inducing actin assembly in Xenopus egg extracts. J. Cell Biol. 140, 1125–1136 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Arioka, M., Nakashima, S., Shibasaki, Y. & Kitamoto, K. Dibasic amino acid residues at the carboxy-terminal end of kinase homology domain participate in the plasma membrane localization and function of phosphatidylinositol 5-kinase γ. Biochem. Biophys. Res. Commun. 319, 456–463 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Rohatgi, R., Ho, H. Y. & Kirschner, M. W. Mechanism of N-WASP activation by CDC42 and phosphatidylinositol 4,5-bisphosphate. J. Cell Biol. 150, 1299–1310 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rohatgi, R., Nollau, P., Ho, H. Y., Kirschner, M. W. & Mayer, B. J. Nck and phosphatidylinositol 4,5-bisphosphate synergistically activate actin polymerization through the N-WASP–Arp2/3 pathway. J. Biol. Chem. 276, 26448–26452 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Sechi, A. S. & Wehland, J. The actin cytoskeleton and plasma membrane connection: PtdIns(4,5)P2 influences cytoskeletal protein activity at the plasma membrane. J. Cell Sci. 113, 3685–3695 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Ward, M. E., Wu, J. Y. & Rao, Y. Visualization of spatially and temporally regulated N-WASP activity during cytoskeletal reorganization in living cells. Proc. Natl Acad. Sci. USA 101, 970–974 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mogilner, A. & Oster, G. Polymer motors: pushing out the front and pulling up the back. Curr. Biol. 13, R721–R733 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Oikawa, T. et al. PtdIns(3,4,5)P3 binding is necessary for WAVE2-induced formation of lamellipodia. Nature Cell Biol. 6, 420–426 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Merlot, S. & Firtel, R. A. Leading the way: directional sensing through phosphatidylinositol 3-kinase and other signaling pathways. J. Cell Sci. 116, 3471–3478 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Insall, R. H. & Weiner, O. D. PIP3, PIP2, and cell movement — similar messages, different meanings? Dev. Cell 1, 743–747 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kanaho, Y. & Suzuki, T. Phosphoinositide kinases as enzymes that produce versatile signaling lipids, phosphoinositides. J. Biochem. (Tokyo) 131, 503–509 (2002).

    Article  CAS  Google Scholar 

  54. Doughman, R. L., Firestone, A. J., Wojtasiak, M. L., Bunce, M. W. & Anderson, R. A. Membrane ruffling requires coordination between type Iα phosphatidylinositol phosphate kinase and Rac signaling. J. Biol. Chem. 278, 23036–23045 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. Doughman, R. L., Firestone, A. J. & Anderson, R. A. Phosphatidylinositol phosphate kinases put PI4,5P2 in its place. J. Membr. Biol. 194, 77–89 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Hernandez-Deviez, D. J., Roth, M. G., Casanova, J. E. & Wilson, J. M. ARNO and ARF6 regulate axonal elongation and branching through downstream activation of phosphatidylinositol 4-phosphate 5-kinase α. Mol. Biol. Cell 15, 111–120 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ling, K., Doughman, R. L., Firestone, A. J., Bunce, M. W. & Anderson, R. A. Type I γ phosphatidylinositol phosphate kinase targets and regulates focal adhesions. Nature 420, 89–93 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. Coppolino, M. G. et al. Inhibition of phosphatidylinositol-4-phosphate 5-kinase Iα impairs localized actin remodeling and suppresses phagocytosis. J. Biol. Chem. 277, 43849–43857 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. Botelho, R. J., Scott, C. C. & Grinstein, S. Phosphoinositide involvement in phagocytosis and phagosome maturation. Curr. Top. Microbiol. Immunol. 282, 1–30 (2004).

    CAS  PubMed  Google Scholar 

  60. Lemmon, M. A. Phosphoinositide recognition domains. Traffic 4, 201–213 (2003).

    Article  CAS  PubMed  Google Scholar 

  61. Overduin, M., Cheever, M. L. & Kutateladze, T. G. Signaling with phosphoinositides: better than binary. Mol. Intervent. 1, 150–159 (2001).

    CAS  Google Scholar 

  62. Berg, J. S., Derfler, B. H., Pennisi, C. M., Corey, D. P. & Cheney, R. E. Myosin-X, a novel myosin with pleckstrin homology domains, associates with regions of dynamic actin. J. Cell Sci. 113, 3439–3451 (2000).

    Article  CAS  PubMed  Google Scholar 

  63. Zhang, P., Talluri, S., Deng, H., Branton, D. & Wagner, G. Solution structure of the pleckstrin homology domain of Drosophila β-spectrin. Structure 3, 1185–1195 (1995).

    Article  CAS  PubMed  Google Scholar 

  64. Hyvonen, M. et al. Structure of the binding site for inositol phosphates in a PH domain. EMBO J. 14, 4676–4685 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lemmon, M. A., Ferguson, K. M. & Abrams, C. S. Pleckstrin homology domains and the cytoskeleton. FEBS Lett. 513, 71–76 (2002).

    Article  CAS  PubMed  Google Scholar 

  66. Barret, C., Roy, C., Montcourrier, P., Mangeat, P. & Niggli, V. Mutagenesis of the phosphatidylinositol 4,5-bisphosphate (PIP2) binding site in the NH2-terminal domain of ezrin correlates with its altered cellular distribution. J. Cell Biol. 151, 1067–1080 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bompard, G., Martin, M., Roy, C., Vignon, F. & Freiss, G. Membrane targeting of protein tyrosine phosphatase PTPL1 through its FERM domain via binding to phosphatidylinositol 4,5-biphosphate. J. Cell Sci. 116, 2519–2530 (2003).

    Article  CAS  PubMed  Google Scholar 

  68. Young, P. & Gautel, M. The interaction of titin and α-actinin is controlled by a phospholipid-regulated intramolecular pseudoligand mechanism. EMBO J. 19, 6331–6340 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Fukami, K. et al. Requirement of phosphatidylinositol 4,5-bisphosphate for α-actinin function. Nature 359, 150–152 (1992).

    Article  CAS  PubMed  Google Scholar 

  70. Fukami, K., Sawada, N., Endo, T. & Takenawa, T. Identification of a phosphatidylinositol 4,5-bisphosphate-binding site in chicken skeletal muscle α-actinin. J. Biol. Chem. 271, 2646–2650 (1996).

    Article  CAS  PubMed  Google Scholar 

  71. Fraley, T. S. et al. Phosphoinositide binding inhibits α-actinin bundling activity. J. Biol. Chem. 278, 24039–24045 (2003).

    Article  CAS  PubMed  Google Scholar 

  72. Corgan, A. M., Singleton, C., Santoso, C. B. & Greenwood, J. A. Phosphoinositides differentially regulate α-actinin flexibility and function. Biochem. J. 378, 1067–1072 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Gilmore, A. P. & Burridge, K. Regulation of vinculin binding to talin and actin by phosphatidyl-inositol-4-5-bisphosphate. Nature 381, 531–535 (1996).

    Article  CAS  PubMed  Google Scholar 

  74. Steimle, P. A., Hoffert, J. D., Adey, N. B. & Craig, S. W. Polyphosphoinositides inhibit the interaction of vinculin with actin filaments. J. Biol. Chem. 274, 18414–18420 (1999).

    Article  CAS  PubMed  Google Scholar 

  75. Nayal, A., Webb, D. J. & Horwitz, A. F. Talin: an emerging focal point of adhesion dynamics. Curr. Opin. Cell Biol. 16, 94–98 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. Raghunathan, V., Mowery, P., Rozycki, M., Lindberg, U. & Schutt, C. Structural changes in profilin accompany its binding to phosphatidylinositol, 4,5-bisphosphate. FEBS Lett. 297, 46–50 (1992).

    Article  CAS  PubMed  Google Scholar 

  77. Xian, W. & Janmey, P. A. Dissecting the gelsolin-polyphosphoinositide interaction and engineering of a polyphosphoinositide-sensitive gelsolin C-terminal half protein. J. Mol. Biol. 322, 755–771 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Kumar, N., Zhao, P., Tomar, A., Galea, C. A. & Khurana, S. Association of villin with phosphatidylinositol 4,5-bisphosphate regulates the actin cytoskeleton. J. Biol. Chem. 279, 3096–3110 (2004). The most detailed mutational analysis so far of PtdIns(4,5)P 2 -binding domains in an actin-binding protein.

    Article  CAS  PubMed  Google Scholar 

  79. Xian, W., Vegners, R., Janmey, P. A. & Braunlin, W. H. Spectroscopic studies of a phosphoinositide-binding peptide from gelsolin: behavior in solutions of mixed solvent and anionic micelles. Biophys. J. 69, 2695–2702 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Puius, Y. A., Fedorov, E. V., Eichinger, L., Schleicher, M. & Almo, S. C. Mapping the functional surface of domain 2 in the gelsolin superfamily. Biochemistry 39, 5322–5331 (2000).

    Article  CAS  PubMed  Google Scholar 

  81. Baron, C. B., Pring, M. & Coburn, R. F. Inositol lipid turnover and compartmentation in Canine trachealis smooth muscle. Am. J. Physiol. 256, C375–C383 (1989).

    Article  CAS  PubMed  Google Scholar 

  82. Gascard, P., Sauvage, M., Sulpice, J. C. & Giraud, F. Characterization of structural and functional phosphoinositide domains in human erythrocyte membranes. Biochemistry 32, 5941–5948 (1993).

    Article  CAS  PubMed  Google Scholar 

  83. Vickers, J. D. & Mustard, J. F. The phosphoinositides exist in multiple metabolic pools in rabbit platelets. Biochem. J. 238, 411–417 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Haugh, J. M., Codazzi, F., Teruel, M. & Meyer, T. Spatial sensing in fibroblasts mediated by 3′ phosphoinositides. J. Cell Biol. 151, 1269–1280 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Hope, H. R. & Pike, L. J. Phosphoinositides and phosphoinositide-utilizing enzymes in detergent-insoluble lipid domains. Mol. Biol. Cell 7, 843–851 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Hannigan, M. et al. Neutrophils lacking phosphoinositide 3-kinase γ show loss of directionality during N-formyl-Met-Leu-Phe-induced chemotaxis. Proc. Natl Acad. Sci. USA 99, 3603–3608 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Tall, E. G., Spector, I., Pentyala, S. N., Bitter, I. & Rebecchi, M. J. Dynamics of phosphatidylinositol 4,5-bisphosphate in actin-rich structures. Curr. Biol. 10, 743–746 (2000).

    Article  CAS  PubMed  Google Scholar 

  88. Devreotes, P. & Janetopoulos, C. Eukaryotic chemotaxis: distinctions between directional sensing and polarization. J. Biol. Chem. 278, 20445–20448 (2003).

    Article  CAS  PubMed  Google Scholar 

  89. van Rheenen, J. & Jalink, K. Agonist–induced PIP2 hydrolysis inhibits cortical actin dynamics: regulation at a global but not at a micrometer scale. Mol. Biol. Cell 13, 3257–3267 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Sugiura, Y. Structure of molecular aggregates of 1-(3-sn-phosphatidyl)-L-myo-inositol 3,4-bis(phosphate) in water. Biochim. Biophys. Acta 641, 148–159 (1981).

    Article  CAS  PubMed  Google Scholar 

  91. Flanagan, L. A. et al. The structure of divalent cation-induced aggregates of PIP2 and their alteration by gelsolin and tau. Biophys. J. 73, 1440–1447 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Bettache, N. et al. Mechanical constraint imposed on plasma membrane through transverse phospholipid imbalance induces reversible actin polymerization via phosphoinositide 3-kinase activation. J. Cell Sci. 116, 2277–2284 (2003).

    Article  CAS  PubMed  Google Scholar 

  93. Cebers, A. & Janmey, P. Shape instabilities in charged lipid domains. J. Phys. Chem. B 106, 12351–12353 (2002).

    Article  CAS  Google Scholar 

  94. McLaughlin, S., Wang, J., Gambhir, A. & Murray, D. PIP2 and proteins: interactions, organization, and information flow. Annu. Rev. Biophys. Biomol. Struct. 31, 151–175 (2002).

    Article  CAS  PubMed  Google Scholar 

  95. Wang, J. et al. Lateral sequestration of phosphatidylinositol 4,5-bisphosphate by the basic effector domain of myristoylated alanine-rich C kinase substrate is due to nonspecific electrostatic interactions. J. Biol. Chem. 277, 34401–34412 (2002).

    Article  CAS  PubMed  Google Scholar 

  96. Zhang, W., Crocker, E., McLaughlin, S. & Smith, S. O. Binding of peptides with basic and aromatic residues to bilayer membranes: phenylalanine in the myristoylated alanine-rich C kinase substrate effector domain penetrates into the hydrophobic core of the bilayer. J. Biol. Chem. 278, 21459–21466 (2003).

    Article  CAS  PubMed  Google Scholar 

  97. Gambhir, A. et al. Electrostatic sequestration of PIP2 on phospholipid membranes by basic/aromatic regions of proteins. Biophys. J. 86, 2188–2207 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Foster, W. J. & Janmey, P. A. The distribution of polyphosphoinositides in lipid films. Biophys. Chem. 91, 211–218 (2001)

    Article  CAS  PubMed  Google Scholar 

  99. Liepina, I., Czaplewski, C., Janmey, P. & Liwo, A. Molecular dynamics study of a gelsolin-derived peptide binding to a lipid bilayer containing phosphatidylinositol 4,5-bisphosphate. Biopolymers 71, 49–70 (2003).

    Article  CAS  PubMed  Google Scholar 

  100. Redfern, D. A. & Gericke, A. Domain formation in phosphatidylinositol monophosphate/phosphatidylcholine mixed vesicles. Biophys. J. 86, 2980–2992 (2004). Identification of phosphoinositide-enriched clusters in fluid bilayer vesicles implies a new model for membrane-domain formation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Burtnick, L. D. et al. The crystal structure of plasma gelsolin: implications for actin severing, capping, and nucleation. Cell 90, 661–670 (1997).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

U.L. would like to thank The Swedish National Science Research Council and The Swedish Cancer Society for long-standing financial support. P.A.J. would like to thank the US National Institute of Arthritis and Musculoskeletal and Skin Disease and the Fogarty International Center for financial support of work in this field.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Paul A. Janmey or Uno Lindberg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Interpro

ENTH domain

FERM domain

PH domain

PX domain

OMIM

Lowe's syndrome

Swiss-Prot

cortactin

ezrin

gelsolin

GLUT4

MARCKS

moesin

myosin X

N-WASP

PTPL1

radixin

transferrin

vinculin

Glossary

PLECKSTRIN-HOMOLOGY (PH) DOMAIN

A sequence of 100 amino acids that is present in many signalling molecules and binds to phosphoinositides. Pleckstrin is a protein of unknown function that was originally identified in platelets. It is a principal substrate of protein kinase C.

RHO-FAMILY GTPases

Ras-related GTPases that are involved in controlling the polymerization of actin.

LIPID RAFTS

Lateral aggregates of cholesterol and sphingomyelin that are thought to occur in the plasma membrane.

RUFFLES

Processes that are formed by the movement of lamellipodia that are in the dynamic process of folding back onto the cell body from which they previously extended.

GROWTH CONE

Motile tip of the axon or dendrite of a growing nerve cell, which spreads out into a large cone-shaped appendage.

FOCAL-ADHESION COMPLEX

Focal adhesions are cellular structures that link the extracellular matrix on the outside of the cell, through integrin receptors, to the actin cytoskeleton inside the cell.

PHAGOCYTOSIS

An actin-dependent process by which cells engulf external particulate material by extension and fusion of pseudopods.

FRET

(fluorescence resonance energy transfer). The fluorescence energy that is transferred from one fluor excites a neighbouring fluor that then re-emits the energy at a third wavelength. Transfer occurs only if the two fluors are close, so FRET can be used to monitor real-time protein–protein interactions in living cells.

FILOPODIA

Thin cellular processes containing long, unbranched, parallel bundles of actin filaments.

PX DOMAIN

(phox-homology domain). A lipid- and protein-interaction domain that consists of 100–130 amino acids and is defined by sequences that are found in two components of the phagocyte NADPH oxidase (phox) complex.

EPSIN AMINO (N)-TERMINAL HOMOLOGY DOMAIN

(ENTH). A phospholipid-binding motif with high affinity for PtdIns(4,5)P2.

NUCLEAR MAGNETIC RESONANCE

(NMR). A technique used to determine the content, purity and molecular structure of a sample. This method is based on the fact that some atomic nuclei have a magnetic moment. When these nuclei are placed in a magnetic field and are simultaneously exposed to electromagnetic radiation, they change their energy state and absorb energy.

CIRCULAR DICHROISM

An optical method measuring differential effects on light of different polarization directions to quantify the amount of α-helical and β-stranded structures within proteins.

Z-BAND

A region of muscle sarcomere to which the plus ends of actin filaments are attached. It appears as a dark transverse line in micrographs.

SARCOMERE

The structure within a muscle cell where actin and myosin filaments overlap to produce the movements that are required for muscle contraction. Proteins such as α-actinin were first described in these structures as proteins required to bind actin filaments in parallel arrays. Similar biochemical interactions between actin and actin-binding proteins also occur in non-muscle cells.

β-STRAND

An element of protein secondary structure. Hydrogen bonds between the backbones of the same or different polypeptides stabilize arrays of parallel chains that can form larger elements resembling sheets.

α-HELIX

An element of protein secondary structure in which hydrogen bonds along the backbone of a single polypeptide cause the chain to form a right-handed helix.

FRAP

(fluorescence recovery after photobleaching). A live-cell imaging technique used to study the mobility of fluorescent molecules. A pulse of high intensity light is used to irreversibly photobleach a population of fluorophores in a target region. Recovery of fluorescence in the bleached region represents movement of fluorophores into that region.

OUTER PLASMA-MEMBRANE LEAFLET

A lipid layer that faces the outside of the cell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Janmey, P., Lindberg, U. Cytoskeletal regulation: rich in lipids. Nat Rev Mol Cell Biol 5, 658–666 (2004). https://doi.org/10.1038/nrm1434

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm1434

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing