Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

C-type lectin receptors on dendritic cells and langerhans cells

An Erratum to this article was published on 01 May 2002

Key Points

  • Dendritic cells (DCs) and Langerhans cells (LCs) are professional antigen-presenting cells that play a pivotal role in the initiation and modulation of immune responses.

  • DCs and LCs are migratory cells that are specialized in antigen uptake and the processing and presentation of these antigens to lymphocytes.

  • In addition to DCs and LCs, there are other DC subsets, such as the plasmacytoid DCs that secrete high amounts of type I interferons.

  • Molecular profiling of DCs showed that they produce a unique set of C-type lectins and C-type lectin-like receptors. Different DC subsets and maturation stages exhibit distinct 'C-type-lectin' production profiles.

  • C-type lectins bind carbohydrates in a Ca2+-dependent manner and C-type lectin-like molecules bind either carbohydrates, polypeptide ligands or both.

  • C-type lectins and C-type lectin-like receptors are involved in a multitude of biological processes, including cell migration, antigen uptake and presentation and cell adhesion.

  • Recently, it has been shown that the C-type lectins Langerin and DC-SIGN are preferentially produced by DCs. Langerin is a constituent of the enigmatic Birbeck granules found in LCs. DC-SIGN is a high-affinity receptor for ICAM-3, which is abundantly expressed on naive T cells and has been implicated in the well-known phenomenon of antigen-independent DC–T-cell clustering.

  • DC-SIGN has also been shown to bind HIV-1 through interaction with the coat protein gp120 and to promote efficient infection in trans of T cells that produce the classical HIV CD4 and chemokine receptors.

Abstract

Dendritic cells and Langerhans cells are specialized for the recognition of pathogens and have a pivotal role in the control of immunity. As guardians of the immune system, they are present in essentially every organ and tissue, where they operate at the interface of innate and acquired immunity. Recently, several C-type lectin and lectin-like receptors have been characterized that are expressed abundantly on the surface of these professional antigen-presenting cells. It is now becoming clear that lectin receptors not only serve as antigen receptors but also regulate the migration of dendritic cells and their interaction with lymphocytes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Two types of C-type lectins or lectin-like molecules are produced by dendritic cells and Langerhans cells.
Figure 2: Functional similarities between C-type lectins and lectin-like molecules on dendritic cells and other related molecules.

Similar content being viewed by others

References

  1. Clark, G. J. et al. The role of dendritic cells in the innate immune system. Microbes Infect . 2, 257–272 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Dzionek, A. et al. BDCA-2, BDCA-3, and BDCA-4: three markers for distinct subsets of dendritic cells in human peripheral blood. J. Immunol . 165, 6037–6046 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Dzionek, A. et al. BDCA-2, a novel plasmacytoid dendritic cell-specific type II C-type lectin, mediates antigen capture and is a potent inhibitor of interferon α/β nduction. J. Exp. Med. 194, 1823–1834 (2001).BCDA2 is a C-type lectin expressed by plasmacytoid dendritic cells

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Medzhitov, R. & Janeway, C. Jr The Toll receptor family and microbial recognition. Trends Microbiol . 8, 452–456 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Sallusto, F., Cella, M., Danieli, C. & Lanzavecchia, A. Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment: downregulation by cytokines and bacterial products. J. Exp. Med . 182, 389–400 (1995).Important paper describing the role of CD206 as an antigen uptake receptor.

    Article  CAS  PubMed  Google Scholar 

  6. Wintergerst, E., Manz-Keinke, H., Plattner, H. & Schlepper-Schafer, J. The interaction of a lung surfactant protein (SP-A) with macrophages is mannose dependent. Eur. J. Cell Biol. 50, 291–298 (1989).

    CAS  PubMed  Google Scholar 

  7. Kawasaki, N., Kawasaki, T. & Yamashina, I. Isolation and characterization of a mannan-binding protein from human serum. J. Biochem. (Tokyo) 94, 937–947 (1983).

    Article  CAS  Google Scholar 

  8. Kogelberg, H. & Feizi, T. New structural insights into lectin-type proteins of the immune system. Curr. Opin. Struct. Biol. 11, 635–643 (2001).Review highlighting structural aspects of lectin and lectin-like domains.

    Article  CAS  PubMed  Google Scholar 

  9. Taylor, M. E., Conary, J. T., Lennartz, M. R., Stahl, P. D. & Drickamer, K. Primary structure of the mannose receptor contains multiple motifs resembling carbohydrate-recognition domains. J. Biol. Chem . 265, 12156–12162 (1990).

    CAS  PubMed  Google Scholar 

  10. Stahl, P. D. & Ezekowitz, R. A. The mannose receptor is a pattern recognition receptor involved in host defense. Curr. Opin. Immunol. 10, 50–55 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Kato, M. et al. cDNA cloning of human DEC-205, a putative antigen-uptake receptor on dendritic cells. Immunogenetics 47, 442–450 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Mahnke, K. et al. The dendritic cell receptor for endocytosis, DEC-205, can recycle and enhance antigen presentation via major histocompatibility complex class II-positive lysosomal compartments. J. Cell Biol. 151, 673–684 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bonifacino, J. S. & Dell'Angelica, E. C. Molecular bases for the recognition of tyrosine-based sorting signals. J. Cell Biol. 145, 923–926 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ren, R., Mayer, B. J., Cicchetti, P. & Baltimore, D. Identification of a ten-amino acid proline-rich SH3 binding site. Science 259, 1157–1161 (1993).

    Article  CAS  PubMed  Google Scholar 

  15. Geijtenbeek, T. B. et al. Identification of DC-SIGN, a novel dendritic cell-specific ICAM-3 receptor that supports primary immune responses. Cell 100, 575–585 (2000).First paper to describe DC-SIGN as a DC-specific C-type lectin binding ICAM-3.

    Article  CAS  PubMed  Google Scholar 

  16. Curtis, B. M., Scharnowske, S. & Watson, A. J. Sequence and expression of a membrane-associated C-type lectin that exhibits CD4-independent binding of human immunodeficiency virus envelope glycoprotein gp120. Proc. Natl Acad. Sci. USA 89, 8356–8360 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Geijtenbeek, T. B. et al. DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells. Cell 100, 587–597 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Soilleux, E. J., Barten, R. & Trowsdale, J. DC-SIGN ; a related gene, DC-SIGNR ; and CD23 form a cluster on 19p13. J. Immunol . 165, 2937–2942 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Bashirova, A. A. et al. A dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin (DC-SIGN)-related protein is highly expressed on human liver sinusoidal endothelial cells and promotes HIV-1 infection. J. Exp. Med . 193, 671–678 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pohlmann, S. et al. DC-SIGNR, a DC-SIGN homologue expressed in endothelial cells, binds to human and simian immunodeficiency viruses and activates infection in trans. Proc. Natl Acad. Sci. USA 98, 2670–2675 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mummidi, S. et al. Extensive repertoire of membrane-bound and soluble DC-SIGN1 and DC-SIGN2 isoforms: inter-individual variation in expression of DC-SIGN transcripts. J. Biol. Chem. 276, 33196–33212 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Bates, E. E. et al. APCs express DCIR, a novel C-type lectin surface receptor containing an immunoreceptor tyrosine-based inhibitory motif. J. Immunol. 163, 1973–1983 (1999).

    CAS  PubMed  Google Scholar 

  23. Ariizumi, K. et al. Cloning of a second dendritic cell-associated C-type lectin (dectin-2) and its alternatively spliced isoforms. J. Biol. Chem. 275, 11957–11963 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Colonna, M., Samaridis, J. & Angman, L. Molecular characterization of two novel C-type lectin-like receptors, one of which is selectively expressed in human dendritic cells. Eur. J. Immunol. 30, 697–704 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Huang, X. et al. Cloning and characterization of a novel ITIM containing lectin-like immunoreceptor LLIR and its two transmembrane region deletion variants. Biochem. Biophys. Res. Commun. 281, 131–140 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Eichler, W., Ruschpler, P., Wobus, M. & Drossler, K. Differentially induced expression of C-type lectins in activated lymphocytes. J. Cell. Biochem. 81 (Suppl.), 201–208 (2001).

    Article  Google Scholar 

  27. Ariizumi, K. et al. Identification of a novel, dendritic cell-associated molecule, dectin-1, by subtractive cDNA cloning. J. Biol. Chem. 275, 20157–20167 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Brown, G. D. & Gordon, S. Immune recognition. A new receptor for β-glucans. Nature 413, 36–37 (2001).This paper shows that β-glucan is a ligand of the DC-associated C-type lectin-like receptor dectin-1.

    Article  CAS  PubMed  Google Scholar 

  29. Santis, A. G., Lopez-Cabrera, M., Hamann, J., Strauss, M. & Sanchez-Madrid, F. Structure of the gene coding for the human early lymphocyte activation antigen CD69: a C-type lectin receptor evolutionarily related with the gene families of natural killer cell-specific receptors. Eur. J. Immunol. 24, 1692–1697 (1994).

    Article  CAS  PubMed  Google Scholar 

  30. Valladeau, J. et al. Immature human dendritic cells express asialoglycoprotein receptor isoforms for efficient receptor-mediated endocytosis. J. Immunol. 167, 5767–5774 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Yokota, K., Takashima, A., Bergstresser, P. R. & Ariizumi, K. Identification of a human homologue of the dendritic cell-associated C-type lectin-1, dectin-1. Gene 272, 51–60 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Burshtyn, D. N., Yang, W., Yi, T. & Long, E. O. A novel phosphotyrosine motif with a critical amino acid at position −2 for the SH2 domain-mediated activation of the tyrosine phosphatase SHP-1. J. Biol. Chem. 272, 13066–13072 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. Kato, M. et al. Expression of multilectin receptors and comparative FITC–dextran uptake by human dendritic cells. Int. Immunol. 12, 1511–1519 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Geijtenbeek, T. B. et al. DC-SIGN–ICAM-2 interaction mediates dendritic cell trafficking. Nature Immunol. 1, 353–357 (2000).

    Article  CAS  Google Scholar 

  35. Knolle, P. A. & Gerken, G. Local control of the immune response in the liver. Immunol. Rev. 174, 21–34 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Groger, M. et al. Dermal microvascular endothelial cells express the 180-kDa macrophage mannose receptor in situ and in vitro. J. Immunol. 165, 5428–5434 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Drickamer, K. & Dodd, R. B. C-Type lectin-like domains in Caenorhabditis elegans : predictions from the complete genome sequence. Glycobiology 9, 1357–1369 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Mitchell, D. A., Fadden, A. J. & Drickamer, K. A novel mechanism of carbohydrate recognition by the C-type lectins DC-SIGN and DC–SIGNR: subunit organisation and binding to multivalent ligands. J. Biol. Chem. 276, 28939–28945 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Soumelis, V. et al. Depletion of circulating natural type 1 interferon-producing cells in HIV-infected AIDS patients. Blood 98, 906–912 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Stahl, P., Schlesinger, P. H., Sigardson, E., Rodman, J. S. & Lee, Y. C. Receptor-mediated pinocytosis of mannose glycoconjugates by macrophages: characterization and evidence for receptor recycling. Cell 19, 207–215 (1980).Important early paper showing the role of C-type lectins in antigen uptake.

    Article  CAS  PubMed  Google Scholar 

  41. Engering, A. J. et al. The mannose receptor functions as a high capacity and broad specificity antigen receptor in human dendritic cells. Eur. J. Immunol. 27, 2417–2425 (1997).

    Article  CAS  PubMed  Google Scholar 

  42. Shen, L., Lang, M. L. & Wade, W. F. The ins and outs of getting in: structures and signals that enhance BCR or Fc receptor-mediated antigen presentation. Immunopharmacology 49, 227–240 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. de Saint-Vis, B. et al. A novel lysosome-associated membrane glycoprotein, DC-LAMP, induced upon DC maturation, is transiently expressed in MHC class II compartment. Immunity 9, 325–336 (1998).

    Article  CAS  PubMed  Google Scholar 

  44. Valladeau, J. et al. The monoclonal antibody DCGM4 recognizes Langerin, a protein specific of Langerhans cells, and is rapidly internalized from the cell surface. Eur. J. Immunol. 29, 2695–2704 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. Jordens, R., Thompson, A., Amons, R. & Koning, F. Human dendritic cells shed a functional, soluble form of the mannose receptor. Int. Immunol. 11, 1775–1780 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Leteux, C. et al. The cysteine-rich domain of the macrophage mannose receptor is a multispecific lectin that recognizes chondroitin sulfates A and B and sulfated oligosaccharides of blood group Lewis(A) and Lewis(X) types in addition to the sulfated N -glycans of lutropin. J. Exp. Med. 191, 1117–1126 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Fukuda, M., Hiraoka, N. & Yeh, J. C. C-type lectins and sialyl Lewis X oligosaccharides. Versatile roles in cell–cell interaction. J. Cell Biol. 147, 467–470 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Steinman, R. M. & Cohn, Z. A. Identification of a novel cell type in peripheral lymphoid organs of mice. II. Functional properties in vitro. J. Exp. Med. 139, 380–397 (1974).Seminal dendritic cell paper.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. de Fougerolles, A. R. & Springer, T. A. Intercellular adhesion molecule 3, a third adhesion counter-receptor for lymphocyte function-associated molecule 1 on resting lymphocytes. J. Exp. Med. 175, 185–190 (1992).

    Article  CAS  PubMed  Google Scholar 

  50. Garner, R. E., Rubanowice, K., Sawyer, R. T. & Hudson, J. A. Secretion of TNF-α by alveolar macrophages in response to Candida albicans mannan. J. Leukocyte Biol. 55, 161–168 (1994).

    Article  CAS  PubMed  Google Scholar 

  51. Bieber, T. et al. CD69, an early activation antigen on lymphocytes, is constitutively expressed by human epidermal Langerhans cells. J. Invest. Dermatol. 98, 771–776 (1992).

    Article  CAS  PubMed  Google Scholar 

  52. Ryan, J. C. & Seaman, W. E. Divergent functions of lectin-like receptors on NK cells. Immunol. Rev. 155, 79–89 (1997).

    Article  CAS  PubMed  Google Scholar 

  53. Feizi, T. Carbohydrate-mediated recognition systems in innate immunity. Immunol. Rev. 173, 79–88 (2000).

    Article  CAS  PubMed  Google Scholar 

  54. Jiang, W. et al. The receptor DEC-205 expressed by dendritic cells and thymic epithelial cells is involved in antigen processing. Nature 375, 151–155 (1995).

    Article  CAS  PubMed  Google Scholar 

  55. Valladeau, J. et al. Langerin, a novel C-type lectin specific to Langerhans cells, is an endocytic receptor that induces the formation of Birbeck granules. Immunity 12, 71–81 (2000).This study shows that the enigmatic Birbeck granules are induced by the type II C-type lectin Langerin.

    Article  CAS  PubMed  Google Scholar 

  56. Feinber, H., Mitchell, D. A., Drickamer, K. & Weis, M. J. Structural basis for selective recognition of oligosaccharides by DC-SIGN and DC-SIGNR. Science 294, 2163–2166 (2001).

    Article  Google Scholar 

  57. Engering, A. et al. The dendritic cell-specific C-type lectin in DC-SIGN internalizes antigen for presentation to T cells. J. Immunol. (in the press).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl G. Figdor.

Related links

Related links

DATABASES

LocusLink

activation-induced C-type lectin

CD11c

CD123

CD14

CD161

CD1a

CD205

CD206

CD23

CD34

CD4

CD6

CD69

CD94

DCIR

DC-LAMP

DC-SIGN

DC-SIGNR

dectin 1

dectin 2

ICAM-2

ICAM-3

interleukin 12

Langerin

SP-A

SP-D

mannose binding protein

NKG2A

SHP-1

tumour necrosis factor

type-1 interferon

InterPro

CRD

ITAM

FlyBase

Toll

FURTHER INFORMATION

Dendritic cells (T lymphocyte-stimulating)

Glossary

BIRBECK GRANULES

Pentalamellar cytoplasmic organelles in LCs.

PLASMACYTOID DCS

DCs that morphologically resemble antibody-producing plasma cells but produce large amounts of interferon, not immunoglobulins.

PATHOGEN-ASSOCIATED MOLECULAR PATTERNS

PAMPs are invariant molecular signatures of microorganisms that are essential for microorganism survival and are recognised by receptors of the innate immune system (PRRs).

PATTERN-RECOGNITION RECEPTORS

PRRs have evolved to detect PAMPs on microorganisms and so detect the presence of infection.

CARBOHYDRATE RECOGNITION DOMAINS

Protein fold that allows Ca2+ and carbohydrate binding.

IMMUNORECEPTOR TYROSINE-BASED INHIBITORY MOTIF

(ITIM). A structural motif found in the cytoplasmic domains of many receptors. These motifs recruit intracellular tyrosine phosphatases, which mediate the inhibition.

IMMUNORECEPTOR TYROSINE-BASED ACTIVATION MOTIF

(ITAM). A structural motif containing tyrosine residues found in the cytoplasmic tails of several signalling molecules. The motif has the form Tyr-Xaa-Xaa-Leu/Ile, and the tyrosine is a target for phosphorylation by Src tyrosine kinases and subsequent binding of proteins containing SH2 domains.

CROSS-PRESENTATION

The presentation of exogenous antigen by MHC class I molecules.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Figdor, C., van Kooyk, Y. & Adema, G. C-type lectin receptors on dendritic cells and langerhans cells. Nat Rev Immunol 2, 77–84 (2002). https://doi.org/10.1038/nri723

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri723

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing