Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cross-regulation between herpesviruses and the TNF superfamily members

Key Points

  • The attachment of herpesviruses to host cells requires many steps, including initial non-specific attachment, specific attachment to entry receptors and viral fusion with the cell membrane.

  • Herpes simplex virus (HSV) enters cells using the gD-binding receptors herpesvirus entry mediator, nectin-1, nectin-2 and a form of heparan sulphate, as well as the gB-binding receptor paired immunoglobulin-like type 2 receptor-α. HSV can use signalling that is induced by these receptors to regulate host immune responses.

  • The human herpesviruses express several homologues of tumour-necrosis factor (TNF) receptors, which they use to provide survival and, in some cases, transforming signals to the host cells.

  • An important mechanism of viral clearance that is used by the host immune system involves the use of the death-domain-containing TNF receptors CD95 and TNF-related apoptosis-inducing ligand receptor (TRAILR) to induce apoptosis of infected cells.

  • Adaptive immune responses are boosted through co-stimulatory signals from TNF receptors such as OX40, which increase the numbers of virus-specific T cells to limit viral replication.

  • The chronic pathogen cytomegalovirus induces interferon production and lymphotoxin-β receptor activation in infected cells, which results in reduced virus production and the establishment of host–pathogen 'détente'; this allows survival of both the virus and the host cell.

Abstract

Herpesviruses have evolved numerous strategies to subvert host immune responses so they can coexist with their host species. These viruses 'co-opt' host genes for entry into host cells and then express immunomodulatory genes, including mimics of members of the tumour-necrosis factor (TNF) superfamily, that initiate and alter host-cell signalling pathways. TNF superfamily members have crucial roles in controlling herpesvirus infection by mediating the direct killing of infected cells and by enhancing immune responses. Despite these strong immune responses, herpesviruses persist in a latent form, which suggests a dynamic relationship between the host immune system and the virus that results in a balance between host survival and viral control.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Herpes simplex virus entry receptors and ligands.
Figure 2: Co-stimulatory and inhibitory signalling by HVEM and PILRα.
Figure 3: Tumour-necrosis-factor-receptor-like signalling of viral proteins.
Figure 4: The role of tumour-necrosis factor receptors in the control of viral replication.

Similar content being viewed by others

References

  1. McGeoch, D. J., Rixon, F. J. & Davison, A. J. Topics in herpesvirus genomics and evolution. Virus Res. 117, 90–104 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. French, A. R. et al. Escape of mutant double-stranded DNA virus from innate immune control. Immunity 20, 747–756 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Glenney, G. W. & Wiens, G. D. Early diversification of the TNF superfamily in teleosts: genomic characterization and expression analysis. J. Immunol. 178, 7955–7973 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Bridgham, J. T., Wilder, J. A., Hollocher, H. & Johnson, A. L. All in the family: evolutionary and functional relationships among death receptors. Cell. Death Differ. 10, 19–25 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Ware, C. F. Network communications: lymphotoxins, LIGHT, and TNF. Annu. Rev. Immunol. 23, 787–819 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Rahman, M. M. & McFadden, G. Modulation of tumor necrosis factor by microbial pathogens. PLoS Pathog. 2, e4 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Lichtenstein, D. L., Toth, K., Doronin, K., Tollefson, A. E. & Wold, W. S. Functions and mechanisms of action of the adenovirus E3 proteins. Int. Rev. Immunol. 23, 75–111 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Benedict, C. A., Banks, T. A. & Ware, C. F. Death and survival: viral regulation of TNF signaling pathways. Curr. Opin. Immunol. 15, 59–65 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Upton, C., Macen, J., Schreiber, M. & McFadden, G. Myxoma virus expresses a secreted protein with homology to the tumor necrosis factor receptor gene family that contributes to viral virulence. Virology 184, 370–382 (1991).

    Article  CAS  PubMed  Google Scholar 

  10. Spear, P. G. & Longnecker, R. Herpesvirus entry: an update. J. Virol. 77, 10179–10185 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang, X., Kenyon, W. J., Li, Q., Mullberg, J. & Hutt-Fletcher, L. M. Epstein–Barr virus uses different complexes of glycoproteins gH and gL to infect B lymphocytes and epithelial cells. J. Virol. 72, 5552–5558 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang, D. & Shenk, T. Human cytomegalovirus virion protein complex required for epithelial and endothelial cell tropism. Proc. Natl Acad. Sci USA 102, 18153–18158 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Adamiak, B., Ekblad, M., Bergstrom, T., Ferro, V. & Trybala, E. Herpes simplex virus type 2 glycoprotein G is targeted by the sulfated oligo- and polysaccharide inhibitors of virus attachment to cells. J. Virol. 81, 13424–13434 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shukla, D. & Spear, P. G. Herpesviruses and heparan sulfate: an intimate relationship in aid of viral entry. J. Clin. Invest. 108, 503–510 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Spear, P. G. Herpes simplex virus: receptors and ligands for cell entry. Cell. Microbiol. 6, 401–410 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Satoh, T. et al. PILRα is a herpes simplex virus-1 entry co-receptor that associates with glycoprotein B. Cell 132, 935–944 (2008). This recent paper indicates that PILRα is a new entry factor for HSV-1 and shows that the viral glycoprotein gB can also mediate specific viral attachment to host cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Krummenacher, C. et al. Structure of unliganded HSV gD reveals a mechanism for receptor-mediated activation of virus entry. EMBO J. 24, 4144–4153 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cocchi, F., Menotti, L., Mirandola, P., Lopez, M. & Campadelli-Fiume, G. The ectodomain of a novel member of the immunoglobulin subfamily related to the poliovirus receptor has the attributes of a bona fide receptor for herpes simplex virus types 1 and 2 in human cells. J. Virol. 72, 9992–10002 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Montgomery, R. I., Warner, M. S., Lum, B. J. & Spear, P. G. Herpes simplex virus-1 entry into cells mediated by a novel member of the TNF/NGF receptor family. Cell 87, 427–436 (1996). This report identifies HVEM as the entry receptor for HSV-1.

    Article  CAS  PubMed  Google Scholar 

  20. Simpson, S. A. et al. Nectin-1/HveC mediates herpes simplex virus type 1 entry into primary human sensory neurons and fibroblasts. J. Neurovirol. 11, 208–218 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Manoj, S., Jogger, C. R., Myscofski, D., Yoon, M. & Spear, P. G. Mutations in herpes simplex virus glycoprotein D that prevent cell entry via nectins and alter cell tropism. Proc. Natl Acad. Sci. USA 101, 12414–12421 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Taylor, J. M. et al. Alternative entry receptors for herpes simplex virus and their roles in disease. Cell Host Microbe 2, 19–28 (2007). This recent report is the first to show the specific contributions of each HSV-2 entry receptor in vivo , indicating that although either HVEM or nectin-1 can mediate infection, nectin-1 is mainly responsible for the formation of external lesions and neuronal infection.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kinkade, A. & Ware, C. F. The DARC conspiracy — virus invasion tactics. Trends Immunol. 27, 362–367 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Subramanian, R. P., Dunn, J. E. & Geraghty, R. J. The nectin-1α transmembrane domain, but not the cytoplasmic tail, influences cell fusion induced by HSV-1 glycoproteins. Virology 339, 176–191 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Whitbeck, J. C. et al. Glycoprotein D of herpes simplex virus (HSV) binds directly to HVEM, a member of the tumor necrosis factor receptor superfamily and a mediator of HSV entry. J. Virol. 71, 6083–6093 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Mauri, D. N. et al. LIGHT, a new member of the TNF superfamily, and lymphotoxin α are ligands for herpesvirus entry mediator. Immunity 8, 21–30 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Sedy, J. R. et al. B and T lymphocyte attenuator regulates T cell activation through interaction with herpesvirus entry mediator. Nature Immunol. 6, 90–98 (2005).

    Article  CAS  Google Scholar 

  28. Cai, G. et al. CD160 inhibits activation of human CD4+T cells through interaction with herpesvirus entry mediator. Nature Immunol. 9, 176–185 (2008).

    Article  CAS  Google Scholar 

  29. Schneider, K., Potter, K. G. & Ware, C. F. Lymphotoxin and LIGHT signaling pathways and target genes. Immunol. Rev. 202, 49–66 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Murphy, K. M., Nelson, C. A. & Sedy, J. R. Balancing co-stimulation and inhibition with BTLA and HVEM. Nature Rev. Immunol. 6, 671–681 (2006).

    Article  CAS  Google Scholar 

  31. Locksley, R. M., Killeen, N. & Lenardo, M. J. The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 104, 487–501 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Bodmer, J. L., Schneider, P. & Tschopp, J. The molecular architecture of the TNF superfamily. Trends Biochem. Sci. 27, 19–26 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Compaan, D. M. et al. Attenuating lymphocyte activity: the crystal structure of the BTLA–HVEM complex. J. Biol. Chem. 280, 39553–39561 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Gonzalez, L. C. et al. A coreceptor interaction between the CD28 and TNF receptor family members B and T lymphocyte attenuator and herpesvirus entry mediator. Proc. Natl Acad. Sci. USA 102, 1116–1121 (2005). This study, together with reference 27, identifies BTLA as the natural ligand for HVEM and shows that HVEM ligation of T-cell-expressed BTLA results in inhibition of T-cell activation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cheung, T. C. et al. Evolutionarily divergent herpesviruses modulate T cell activation by targeting the herpesvirus entry mediator cosignaling pathway. Proc. Natl Acad. Sci. USA 102, 13218–13223 (2005). In this study, the authors show that the CMV homologue of HVEM UL144 selectively interacts with the HVEM ligand BTLA and that UL144 can inhibit T-cell responses.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Carfi, A. et al. Herpes simplex virus glycoprotein D bound to the human receptor HveA. Mol. Cell 8, 169–179 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Shiratori, I., Ogasawara, K., Saito, T., Lanier, L. L. & Arase, H. Activation of natural killer cells and dendritic cells upon recognition of a novel CD99-like ligand by paired immunoglobulin-like type 2 receptor. J. Exp. Med. 199, 525–533 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fournier, N. et al. FDF03, a novel inhibitory receptor of the immunoglobulin superfamily, is expressed by human dendritic and myeloid cells. J. Immunol. 165, 1197–1209 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Mousseau, D. D., Banville, D., L'Abbe, D., Bouchard, P. & Shen, S. H. PILRα, a novel immunoreceptor tyrosine-based inhibitory motif-bearing protein, recruits SHP-1 upon tyrosine phosphorylation and is paired with the truncated counterpart PILRβ. J. Biol. Chem. 275, 4467–4474 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Park, S. H. et al. Rapid divergency of rodent CD99 orthologs: implications for the evolution of the pseudoautosomal region. Gene 353, 177–188 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Patel, A. et al. Herpes simplex type 1 induction of persistent NF-κB nuclear translocation increases the efficiency of virus replication. Virology 247, 212–222 (1998).

    Article  CAS  PubMed  Google Scholar 

  42. Amici, C. et al. Herpes simplex virus disrupts NF-κB regulation by blocking its recruitment on the IκBα promoter and directing the factor on viral genes. J. Biol. Chem. 281, 7110–7117 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Taddeo, B., Zhang, W., Lakeman, F. & Roizman, B. Cells lacking NF-κB or in which NF-κB is not activated vary with respect to ability to sustain herpes simplex virus 1 replication and are not susceptible to apoptosis induced by a replication-incompetent mutant virus. J. Virol. 78, 11615–11621 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Medici, M. A. et al. Protection by herpes simplex virus glycoprotein D against Fas-mediated apoptosis: role of nuclear factor κB. J. Biol. Chem. 278, 36059–36067 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Sciortino, M. T. et al. Signaling pathway used by HSV-1 to induce NF-κB activation: possible role of herpes virus entry receptor A. Ann. N.Y. Acad. Sci. 1096, 89–96 (2007).

    Article  CAS  Google Scholar 

  46. Cheshenko, N., Liu, W., Satlin, L. M. & Herold, B. C. Focal adhesion kinase plays a pivotal role in herpes simplex virus entry. J. Biol. Chem. 280, 31116–31125 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Cheshenko, N., Liu, W., Satlin, L. M. & Herold, B. C. Multiple receptor interactions trigger release of membrane and intracellular calcium stores critical for herpes simplex virus entry. Mol. Biol. Cell 18, 3119–3130 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Heo, S. K. et al. HVEM signaling in monocytes is mediated by intracellular calcium mobilization. J. Immunol. 179, 6305–6310 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. La, S., Kim, J., Kwon, B. S. & Kwon, B. Herpes simplex virus type 1 glycoprotein D inhibits T-cell proliferation. Mol. Cells 14, 398–403 (2002).

    CAS  PubMed  Google Scholar 

  50. Sloan, D. D. et al. Inhibition of TCR signaling by herpes simplex virus. J. Immunol. 176, 1825–1833 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Koelle, D. M. et al. Antigenic specificities of human CD4+ T-cell clones recovered from recurrent genital herpes simplex virus type 2 lesions. J. Virol. 68, 2803–2810 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Koelle, D. M. et al. Clearance of HSV-2 from recurrent genital lesions correlates with infiltration of HSV-specific cytotoxic T lymphocytes. J. Clin. Invest. 101, 1500–1508 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhu, J. et al. Virus-specific CD8+ T cells accumulate near sensory nerve endings in genital skin during subclinical HSV-2 reactivation. J. Exp. Med. 204, 595–603 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Alcami, A. Viral mimicry of cytokines, chemokines and their receptors. Nature Rev. Immunol. 3, 36–50 (2003).

    Article  CAS  Google Scholar 

  55. Seet, B. T. et al. Poxviruses and immune evasion. Annu. Rev. Immunol. 21, 377–423 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Stanford, M. M., Werden, S. J. & McFadden, G. Myxoma virus in the European rabbit: interactions between the virus and its susceptible host. Vet. Res. 38, 299–318 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Coffin, W. F. 3rd, Geiger, T. R. & Martin, J. M. Transmembrane domains 1 and 2 of the latent membrane protein 1 of Epstein–Barr virus contain a lipid raft targeting signal and play a critical role in cytostasis. J. Virol. 77, 3749–3758 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Lam, N. & Sugden, B. LMP1, a viral relative of the TNF receptor family, signals principally from intracellular compartments. EMBO J. 22, 3027–3038 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Brinkmann, M. M. & Schulz, T. F. Regulation of intracellular signalling by the terminal membrane proteins of members of the gammaherpesvirinae. J. Gen. Virol. 87, 1047–1074 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Soni, V., Cahir-McFarland, E. & Kieff, E. LMP1 TRAFficking activates growth and survival pathways. Adv. Exp. Med. Biol. 597, 173–187 (2007).

    Article  PubMed  Google Scholar 

  61. Xie, P., Hostager, B. S. & Bishop, G. A. Requirement for TRAF3 in signaling by LMP1 but not CD40 in B lymphocytes. J. Exp. Med. 199, 661–671 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Xie, P. & Bishop, G. A. Roles of TNF receptor-associated factor 3 in signaling to B lymphocytes by carboxyl-terminal activating regions 1 and 2 of the EBV-encoded oncoprotein latent membrane protein 1. J. Immunol. 173, 5546–5555 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Wu, S. et al. LMP1 protein from the Epstein–Barr virus is a structural CD40 decoy in B lymphocytes for binding to TRAF3. J. Biol. Chem. 280, 33620–33626 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Shair, K. H. et al. EBV latent membrane protein 1 activates Akt, NFκB, and Stat3 in B cell lymphomas. PLoS Pathog. 3, e166 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Lambert, S. L. & Martinez, O. M. Latent membrane protein 1 of EBV activates phosphatidylinositol 3-kinase to induce production of IL-10. J. Immunol. 179, 8225–8234 (2007).

    Article  CAS  PubMed  Google Scholar 

  66. Thorley-Lawson, D. A. Epstein–Barr virus: exploiting the immune system. Nature Rev. Immunol. 1, 75–82 (2001).

    Article  CAS  Google Scholar 

  67. Schultheiss, U. et al. TRAF6 is a critical mediator of signal transduction by the viral oncogene latent membrane protein 1. EMBO J. 20, 5678–5691 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Luftig, M. et al. Epstein–Barr virus latent membrane protein 1 activation of NF-κB through IRAK1 and TRAF6. Proc. Natl Acad. Sci. USA 100, 15595–15600 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Atkinson, P. G., Coope, H. J., Rowe, M. & Ley, S. C. Latent membrane protein 1 of Epstein–Barr virus stimulates processing of NF-κB2 p100 to p52. J. Biol. Chem. 278, 51134–51142 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Song, Y. J., Jen, K. Y., Soni, V., Kieff, E. & Cahir-McFarland, E. IL-1 receptor-associated kinase 1 is critical for latent membrane protein 1-induced p65/RelA serine 536 phosphorylation and NF-κB activation. Proc. Natl Acad. Sci. USA 103, 2689–2694 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Luftig, M. et al. Epstein–Barr virus latent infection membrane protein 1 TRAF-binding site induces NIK/IKK α-dependent noncanonical NF-κB activation. Proc. Natl Acad. Sci. USA 101, 141–146 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. Eliopoulos, A. G. et al. TRAF1 is a critical regulator of JNK signaling by the TRAF-binding domain of the Epstein–Barr virus-encoded latent infection membrane protein 1 but not CD40. J. Virol. 77, 1316–1328 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Xie, P., Hostager, B. S., Munroe, M. E., Moore, C. R. & Bishop, G. A. Cooperation between TNF receptor-associated factors 1 and 2 in CD40 signaling. J. Immunol. 176, 5388–5400 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Wan, J. et al. Elucidation of the c-Jun N-terminal kinase pathway mediated by Estein–Barr virus-encoded latent membrane protein 1. Mol. Cell. Biol. 24, 192–199 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Uemura, N. et al. TAK1 is a component of the Epstein–Barr virus LMP1 complex and is essential for activation of JNK but not of NF-κB. J. Biol. Chem. 281, 7863–7872 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Dawson, C. W., Tramountanis, G., Eliopoulos, A. G. & Young, L. S. Epstein–Barr virus latent membrane protein 1 (LMP1) activates the phosphatidylinositol 3-kinase/Akt pathway to promote cell survival and induce actin filament remodeling. J. Biol. Chem. 278, 3694–3704 (2003).

    Article  CAS  PubMed  Google Scholar 

  77. Lagunoff, M., Lukac, D. M. & Ganem, D. Immunoreceptor tyrosine-based activation motif-dependent signaling by Kaposi's sarcoma-associated herpesvirus K1 protein: effects on lytic viral replication. J. Virol. 75, 5891–5898 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lagunoff, M., Majeti, R., Weiss, A. & Ganem, D. Deregulated signal transduction by the K1 gene product of Kaposi's sarcoma-associated herpesvirus. Proc. Natl Acad. Sci. USA 96, 5704–5709 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lee, B. S. et al. Characterization of the Kaposi's sarcoma-associated herpesvirus K1 signalosome. J. Virol. 79, 12173–12184 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Tomlinson, C. C. & Damania, B. The K1 protein of Kaposi's sarcoma-associated herpesvirus activates the Akt signaling pathway. J. Virol. 78, 1918–1927 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Prakash, O. et al. Activation of Src kinase Lyn by the Kaposi sarcoma-associated herpesvirus K1 protein: implications for lymphomagenesis. Blood 105, 3987–3994 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Lee, H. et al. Identification of an immunoreceptor tyrosine-based activation motif of K1 transforming protein of Kaposi's sarcoma-associated herpesvirus. Mol. Cell. Biol. 18, 5219–5228 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Douglas, J., Dutia, B., Rhind, S., Stewart, J. P. & Talbot, S. J. Expression in a recombinant murid herpesvirus 4 reveals the in vivo transforming potential of the K1 open reading frame of Kaposi's sarcoma-associated herpesvirus. J. Virol. 78, 8878–8884 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Brinkmann, M. M. et al. Activation of mitogen-activated protein kinase and NF-κB pathways by a Kaposi's sarcoma-associated herpesvirus K15 membrane protein. J. Virol. 77, 9346–9358 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Brinkmann, M. M., Pietrek, M., Dittrich-Breiholz, O., Kracht, M. & Schulz, T. F. Modulation of host gene expression by the K15 protein of Kaposi's sarcoma-associated herpesvirus. J. Virol. 81, 42–58 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. Coscoy, L. Immune evasion by Kaposi's sarcoma-associated herpesvirus. Nature Rev. Immunol. 7, 391–401 (2007).

    Article  CAS  Google Scholar 

  87. Benedict, C. A. et al. Cutting Edge: a novel viral TNF receptor superfamily member in virulent strains of human cytomegalovirus. J. Immunol. 162, 6967–6970 (1999).

    CAS  PubMed  Google Scholar 

  88. Lurain, N. S. et al. Human cytomegalovirus UL144 open reading frame: sequence hypervariability in low-passage clinical isolates. J. Virol. 73, 10040–10050 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Cha, T. A. et al. Human cytomegalovirus clinical isolates carry at least 19 genes not found in laboratory strains. J. Virol. 70, 78–83 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Poole, E., King, C. A., Sinclair, J. H. & Alcami, A. The UL144 gene product of human cytomegalovirus activates NFκB via a TRAF6-dependent mechanism. EMBO J. 25, 4390–4399 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Krieg, C., Han, P., Stone, R., Goularte, O. D. & Kaye, J. Functional analysis of B and T lymphocyte attenuator engagement on CD4+ and CD8+ T cells. J. Immunol. 175, 6420–6427 (2005).

    Article  CAS  PubMed  Google Scholar 

  92. Chemnitz, J. M., Lanfranco, A. R., Braunstein, I. & Riley, J. L. B and T lymphocyte attenuator-mediated signal transduction provides a potent inhibitory signal to primary human CD4 T cells that can be initiated by multiple phosphotyrosine motifs. J. Immunol. 176, 6603–6614 (2006).

    Article  CAS  PubMed  Google Scholar 

  93. Nelson, C. A. et al. Structural determinants of herpesvirus entry mediator recognition by murine B and T lymphocyte attenuator. J. Immunol. 180, 940–947 (2008). This paper, together with references 17, 33 and 36, presents the known structural information about HVEM and its viral and cellular ligands gD and BTLA, showing that HVEM binds to both ligands in a similar manner and that gD undergoes a conformational change following HVEM binding.

    Article  CAS  PubMed  Google Scholar 

  94. Nakayama, T. et al. Selective induction of Th2-attracting chemokines CCL17 and CCL22 in human B cells by latent membrane protein 1 of Epstein–Barr virus. J. Virol. 78, 1665–1674 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. De Trez, C. et al. The inhibitory HVEM–BTLA pathway counter regulates lymphotoxin receptor signaling to achieve homeostasis of dendritic cells. J. Immunol. 180, 238–248 (2008).

    Article  CAS  PubMed  Google Scholar 

  96. Dudziak, D. et al. Differential antigen processing by dendritic cell subsets in vivo. Science 315, 107–111 (2007).

    Article  CAS  PubMed  Google Scholar 

  97. Andrews, D. M., Andoniou, C. E., Granucci, F., Ricciardi-Castagnoli, P. & Degli-Esposti, M. A. Infection of dendritic cells by murine cytomegalovirus induces functional paralysis. Nature Immunol. 2, 1077–1084 (2001).

    Article  CAS  Google Scholar 

  98. Moutaftsi, M., Mehl, A. M., Borysiewicz, L. K. & Tabi, Z. Human cytomegalovirus inhibits maturation and impairs function of monocyte-derived dendritic cells. Blood 99, 2913–2921 (2002).

    Article  CAS  PubMed  Google Scholar 

  99. Sedger, L. M. et al. IFN-γ mediates a novel antiviral activity through dynamic modulation of TRAIL and TRAIL receptor expression. J. Immunol. 163, 920–926 (1999).

    CAS  PubMed  Google Scholar 

  100. Dobbs, M. E., Strasser, J. E., Chu, C. F., Chalk, C. & Milligan, G. N. Clearance of herpes simplex virus type 2 by CD8+ T cells requires γ interferon and either perforin- or Fas-mediated cytolytic mechanisms. J. Virol. 79, 14546–14554 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Morrison, T. E., Mauser, A., Klingelhutz, A. & Kenney, S. C. Epstein–Barr virus immediate-early protein BZLF1 inhibits tumor necrosis factor α-induced signaling and apoptosis by downregulating tumor necrosis factor receptor 1. J. Virol. 78, 544–549 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Baillie, J., Sahlender, D. A. & Sinclair, J. H. Human cytomegalovirus infection inhibits tumor necrosis factor α (TNF-α) signaling by targeting the 55-kilodalton TNF-α receptor. J. Virol. 77, 7007–7016 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Browne, E. P., Wing, B., Coleman, D. & Shenk, T. Altered cellular mRNA levels in human cytomegalovirus-infected fibroblasts: viral block to the accumulation of antiviral mRNAs. J. Virol. 75, 12319–12330 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Le Clorennec, C. et al. EBV latency III immortalization program sensitizes B cells to induction of CD95-mediated apoptosis via LMP1: role of NF-κB, STAT1, and p53. Blood 107, 2070–2078 (2006).

    Article  CAS  PubMed  Google Scholar 

  105. Raftery, M. J. et al. Targeting the function of mature dendritic cells by human cytomegalovirus: a multilayered viral defense strategy. Immunity 15, 997–1009 (2001).

    Article  CAS  PubMed  Google Scholar 

  106. Chiou, S. H. et al. Up-regulation of Fas ligand expression by human cytomegalovirus immediate-early gene product 2: a novel mechanism in cytomegalovirus-induced apoptosis in human retina. J. Immunol. 167, 4098–4103 (2001).

    Article  CAS  PubMed  Google Scholar 

  107. Thome, M. et al. Viral FLICE-inhibitory proteins (FLIPs) prevent apoptosis induced by death receptors. Nature 386, 517–521 (1997).

    Article  CAS  PubMed  Google Scholar 

  108. Thome, M. & Tschopp, J. Regulation of lymphocyte proliferation and death by FLIP. Nature Rev. Immunol. 1, 50–58 (2001).

    Article  CAS  Google Scholar 

  109. Hyer, M. L., Samuel, T. & Reed, J. C. The FLIP-side of Fas signaling. Clin. Cancer Res. 12, 5929–5931 (2006).

    Article  CAS  PubMed  Google Scholar 

  110. Krammer, P. H., Arnold, R. & Lavrik, I. N. Life and death in peripheral T cells. Nature Rev. Immunol. 7, 532–542 (2007).

    Article  CAS  Google Scholar 

  111. Snow, A. L. et al. EBV can protect latently infected B cell lymphomas from death receptor-induced apoptosis. J. Immunol. 177, 3283–3293 (2006).

    Article  CAS  PubMed  Google Scholar 

  112. Chiou, S. H. et al. The immediate early 2 protein of human cytomegalovirus (HCMV) mediates the apoptotic control in HCMV retinitis through up-regulation of the cellular FLICE-inhibitory protein expression. J. Immunol. 177, 6199–6206 (2006).

    Article  CAS  PubMed  Google Scholar 

  113. Skaletskaya, A. et al. A cytomegalovirus-encoded inhibitor of apoptosis that suppresses caspase-8 activation. Proc. Natl Acad. Sci. USA 98, 7829–7834 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. McCormick, A. L., Skaletskaya, A., Barry, P. A., Mocarski, E. S. & Goldmacher, V. S. Differential function and expression of the viral inhibitor of caspase 8-induced apoptosis (vICA) and the viral mitochondria-localized inhibitor of apoptosis (vMIA) cell death suppressors conserved in primate and rodent cytomegaloviruses. Virology 316, 221–233 (2003).

    Article  CAS  PubMed  Google Scholar 

  115. Mack, C., Sickmann, A., Lembo, D. & Brune, W. Inhibition of proinflammatory and innate immune signaling pathways by a cytomegalovirus RIP1-interacting protein. Proc. Natl Acad. Sci. USA 105, 3094–3099 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Sun, Q., Matta, H. & Chaudhary, P. M. The human herpes virus 8-encoded viral FLICE inhibitory protein protects against growth factor withdrawal-induced apoptosis via NF-κB activation. Blood 101, 1956–1961 (2003).

    Article  CAS  PubMed  Google Scholar 

  117. Guasparri, I., Wu, H. & Cesarman, E. The KSHV oncoprotein vFLIP contains a TRAF-interacting motif and requires TRAF2 and TRAF3 for signalling. EMBO Rep. 7, 114–119 (2006).

    Article  CAS  PubMed  Google Scholar 

  118. Field, N. et al. KSHV vFLIP binds to IKK-γ to activate IKK. J. Cell Sci. 116, 3721–3728 (2003).

    Article  CAS  PubMed  Google Scholar 

  119. Matta, H. & Chaudhary, P. M. Activation of alternative NF-κB pathway by human herpes virus 8-encoded Fas-associated death domain-like IL-1 β-converting enzyme inhibitory protein (vFLIP). Proc. Natl Acad. Sci. USA 101, 9399–9404 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Guasparri, I., Keller, S. A. & Cesarman, E. KSHV vFLIP is essential for the survival of infected lymphoma cells. J. Exp. Med. 199, 993–1003 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Matta, H. et al. Induction of spindle cell morphology in human vascular endothelial cells by human herpesvirus 8-encoded viral FLICE inhibitory protein K13. Oncogene 26, 1656–1660 (2007).

    Article  CAS  PubMed  Google Scholar 

  122. Chugh, P. et al. Constitutive NF-κB activation, normal Fas-induced apoptosis, and increased incidence of lymphoma in human herpes virus 8 K13 transgenic mice. Proc. Natl Acad. Sci. USA 102, 12885–12890 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Wang, S. et al. K1 protein of human herpesvirus 8 suppresses lymphoma cell Fas-mediated apoptosis. Blood 109, 2174–2182 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Nanbo, A., Yoshiyama, H. & Takada, K. Epstein–Barr virus-encoded poly(A)- RNA confers resistance to apoptosis mediated through Fas by blocking the PKR pathway in human epithelial intestine 407 cells. J. Virol. 79, 12280–12285 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Reeves, M. B., Davies, A. A., McSharry, B. P., Wilkinson, G. W. & Sinclair, J. H. Complex I binding by a virally encoded RNA regulates mitochondria-induced cell death. Science 316, 1345–1348 (2007).

    Article  CAS  PubMed  Google Scholar 

  126. Kopf, M. et al. OX40-deficient mice are defective in Th cell proliferation but are competent in generating B cell and CTL responses after virus infection. Immunity 11, 699–708 (1999).

    Article  CAS  PubMed  Google Scholar 

  127. Croft, M. Co-stimulatory members of the TNFR family: keys to effective T-cell immunity? Nature Rev. Immunol. 3, 609–620 (2003).

    Article  CAS  Google Scholar 

  128. Watts, T. H. TNF/TNFR family members in costimulation of T cell responses. Annu. Rev. Immunol. 23, 23–68 (2005).

    Article  CAS  PubMed  Google Scholar 

  129. Serghides, L. et al. Evaluation of OX40 ligand as a costimulator of human antiviral memory CD8 T cell responses: comparison with B7.1 and 4–1BBL. J. Immunol. 175, 6368–6377 (2005).

    Article  CAS  PubMed  Google Scholar 

  130. Lee, S. W. et al. Functional dichotomy between OX40 and 4–1BB in modulating effector CD8 T cell responses. J. Immunol. 177, 4464–4472 (2006).

    Article  CAS  PubMed  Google Scholar 

  131. Lepisto, A. J., Xu, M., Yagita, H., Weinberg, A. D. & Hendricks, R. L. Expression and function of the OX40/OX40L costimulatory pair during herpes stromal keratitis. J. Leukoc. Biol. 81, 766–774 (2007).

    Article  CAS  PubMed  Google Scholar 

  132. Yu, Q. et al. OX40 ligation of CD4+ T cells enhances virus-specific CD8+ T cell memory responses independently of IL-2 and CD4+ T regulatory cell inhibition. J. Immunol. 176, 2486–2495 (2006).

    Article  CAS  PubMed  Google Scholar 

  133. Humphreys, I. R. et al. OX40 costimulation promotes persistence of cytomegalovirus-specific CD8 T cells: a CD4-dependent mechanism. J. Immunol. 179, 2195–2202 (2007).

    Article  CAS  PubMed  Google Scholar 

  134. Humphreys, I. R. et al. Cytomegalovirus exploits IL-10-mediated immune regulation in the salivary glands. J. Exp. Med. 204, 1217–1225 (2007). References 133 and 134 show that OX40 controls MCMV infection by co-stimulating antigen-specific T-cell responses, and that stimulating OX40 increases IFNγ production and decreases IL-10 production in the salivary glands.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Moore, K. W., de Waal Malefyt, R., Coffman, R. L. & O'Garra, A. Interleukin-10 and the interleukin-10 receptor. Annu. Rev. Immunol. 19, 683–765 (2001).

    Article  CAS  PubMed  Google Scholar 

  136. Hislop, A. D., Taylor, G. S., Sauce, D. & Rickinson, A. B. Cellular responses to viral infection in humans: lessons from Epstein–Barr virus. Annu. Rev. Immunol. 25, 587–617 (2007).

    Article  CAS  PubMed  Google Scholar 

  137. Krug, A. et al. TLR9-dependent recognition of MCMV by IPC and DC generates coordinated cytokine responses that activate antiviral NK cell function. Immunity 21, 107–119 (2004).

    Article  CAS  PubMed  Google Scholar 

  138. Stetson, D. B. & Medzhitov, R. Recognition of cytosolic DNA activates an IRF3-dependent innate immune response. Immunity 24, 93–103 (2006).

    Article  CAS  PubMed  Google Scholar 

  139. Beutler, B. et al. Genetic analysis of resistance to viral infection. Nature Rev. Immunol. 7, 753–766 (2007).

    Article  CAS  Google Scholar 

  140. Takaoka, A. et al. DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature 448, 501–505 (2007).

    Article  CAS  PubMed  Google Scholar 

  141. Zhang, S. Y. et al. TLR3 deficiency in patients with herpes simplex encephalitis. Science 317, 1522–1527 (2007).

    Article  CAS  PubMed  Google Scholar 

  142. Benedict, C. A. et al. Lymphotoxins and cytomegalovirus cooperatively induce interferon-β, establishing host-virus detente. Immunity 15, 617–626 (2001).

    Article  CAS  PubMed  Google Scholar 

  143. Banks, T. A. et al. A lymphotoxin–IFN-β axis essential for lymphocyte survival revealed during cytomegalovirus infection. J. Immunol. 174, 7217–7225 (2005).

    Article  CAS  PubMed  Google Scholar 

  144. Schneider, K. et al. Lymphotoxin-mediated crosstalk between B cells and splenic stroma promotes the initial type I interferon response to cytomegalovirus. Cell Host Microbe 3, 67–76 (2008). References 142 and 144 describe a mechanism by which LTβR cooperates with CMV in infected cells to induce the production of IFN, and show that B cells are the source of the initial lymphotoxin.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Iversen, A. C., Norris, P. S., Ware, C. F. & Benedict, C. A. Human NK cells inhibit cytomegalovirus replication through a noncytolytic mechanism involving lymphotoxin-dependent induction of IFN-β. J. Immunol. 175, 7568–7574 (2005).

    Article  CAS  PubMed  Google Scholar 

  146. Steed, A. L. et al. γ interferon blocks gammaherpesvirus reactivation from latency. J. Virol. 80, 192–200 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Barton, E. S., Lutzke, M. L., Rochford, R. & Virgin, H. W. 4th. α/β interferons regulate murine gammaherpesvirus latent gene expression and reactivation from latency. J. Virol. 79, 14149–14160 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Benedict, C. A. et al. Specific remodeling of splenic architecture by cytomegalovirus. PLoS Pathog. 2, e16 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Mueller, S. N. et al. Regulation of homeostatic chemokine expression and cell trafficking during immune responses. Science 317, 670–674 (2007).

    Article  CAS  PubMed  Google Scholar 

  150. Scandella, E. et al. Restoration of lymphoid organ integrity through the interaction of lymphoid tissue-inducer cells with stroma of the T cell zone. Nature Immunol. 9, 667–675 (2008).

    Article  CAS  Google Scholar 

  151. Davison, A. J., Cunningham, C., Sauerbier, W. & McKinnell, R. G. Genome sequences of two frog herpesviruses. J. Gen. Virol. 87, 3509–3514 (2006).

    Article  CAS  PubMed  Google Scholar 

  152. Aoki, T. et al. Genome sequences of three koi herpesvirus isolates representing the expanding distribution of an emerging disease threatening koi and common carp worldwide. J. Virol. 81, 5058–5065 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Bernard, D. et al. Costimulatory receptors in jawed vertebrates: conserved CD28, odd CTLA4 and multiple BTLAs. Dev. Comp. Immunol. 31, 255–271 (2007).

    Article  CAS  PubMed  Google Scholar 

  154. Zhang, B., Sun, C., Jin, S., Cascio, M. & Montelaro, R. C. Mapping of equine lentivirus receptor 1 residues critical for equine infectious anemia virus envelope binding. J. Virol. 82, 1204–1213 (2008).

    Article  CAS  PubMed  Google Scholar 

  155. Arvin, A. et al. (eds) Human Herpesviruses: Biology, Therapy, and Immunoprophylaxis. (Cambridge Univ. Press, 2007).

    Book  Google Scholar 

  156. Geraghty, R. J., Krummenacher, C., Cohen, G. H., Eisenberg, R. J. & Spear, P. G. Entry of alpha herpesviruses mediated by poliovirus receptor-related protein 1 and poliovirus receptor. Science 280, 1618–1620 (1998).

    Article  CAS  PubMed  Google Scholar 

  157. Shukla, D. et al. A novel role for 3-O-sulfated heparan sulfate in herpes simplex virus 1 entry. Cell 99, 13–22 (1999).

    Article  CAS  PubMed  Google Scholar 

  158. Zhu, Z., Gershon, M. D., Ambron, R., Gabel, C. & Gershon, A. A. Infection of cells by varicella zoster virus: inhibition of viral entry by mannose 6-phosphate and heparin. Proc. Natl Acad. Sci. USA 92, 3546–3550 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Chen, J. J., Zhu, Z., Gershon, A. A. & Gershon, M. D. Mannose 6-phosphate receptor dependence of varicella zoster virus infection in vitro and in the epidermis during varicella and zoster. Cell 119, 915–926 (2004).

    Article  CAS  PubMed  Google Scholar 

  160. Li, Q., Ali, M. A. & Cohen, J. I. Insulin degrading enzyme is a cellular receptor mediating varicella-zoster virus infection and cell-to-cell spread. Cell 127, 305–316 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Speck, P., Haan, K. M. & Longnecker, R. Epstein–Barr virus entry into cells. Virology 277, 1–5 (2000).

    Article  CAS  PubMed  Google Scholar 

  162. Wang, X., Huong, S. M., Chiu, M. L., Raab-Traub, N. & Huang, E. S. Epidermal growth factor receptor is a cellular receptor for human cytomegalovirus. Nature 424, 456–461 (2003).

    Article  CAS  PubMed  Google Scholar 

  163. Wang, X., Huang, D. Y., Huong, S. M. & Huang, E. S. Integrin αvβ3 is a coreceptor for human cytomegalovirus. Nature Med. 11, 515–521 (2005).

    Article  CAS  PubMed  Google Scholar 

  164. Santoro, F. et al. CD46 is a cellular receptor for human herpesvirus 6. Cell 99, 817–827 (1999).

    Article  CAS  PubMed  Google Scholar 

  165. Santoro, F. et al. Interaction of glycoprotein H of human herpesvirus 6 with the cellular receptor CD46. J. Biol. Chem. 278, 25964–25969 (2003).

    Article  CAS  PubMed  Google Scholar 

  166. Mori, Y., Yang, X., Akkapaiboon, P., Okuno, T. & Yamanishi, K. Human herpesvirus 6 variant A glycoprotein H-glycoprotein L-glycoprotein Q complex associates with human CD46. J. Virol. 77, 4992–4999 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Lusso, P. et al. CD4 is a critical component of the receptor for human herpesvirus 7: interference with human immunodeficiency virus. Proc. Natl Acad. Sci. USA 91, 3872–3876 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Akula, S. M., Pramod, N. P., Wang, F. Z. & Chandran, B. Integrin α3β1 (CD 49c/29) is a cellular receptor for Kaposi's sarcoma-associated herpesvirus (KSHV/HHV-8) entry into the target cells. Cell 108, 407–419 (2002).

    Article  CAS  PubMed  Google Scholar 

  169. Kaleeba, J. A. & Berger, E. A. Kaposi's sarcoma-associated herpesvirus fusion-entry receptor: cystine transporter xCT. Science 311, 1921–1924 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We apologize to all our colleagues whose work could not be cited because of space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl F. Ware.

Related links

Related links

FURTHER INFORMATION

Carl F. Ware's homepage

Glossary

Latent phase

A phase of a virus life cycle that is characterized by the absence of most or all viral-gene transcription despite the presence of the viral genome in host cells.

Lytic replicative cycle

A phase of a virus life cycle that is characterized by active viral-gene transcription and viral-particle production and that commonly results in cell death.

Viral glycoprotein

A glycoprotein that is found in the outer envelope of viruses. Of the 12 glycoproteins that are found in the outer envelope of herpesviruses, gB, gH and gL are the most highly conserved and are thought to be important for virus–host-cell membrane fusion.

Heparan sulphate

A ubiquitously expressed glycosaminoglycan found on most proteoglycans. Most herpesviruses target and use heparan sulphate as a receptor for initial attachment to host cells.

Cysteine-rich domain

(CRD). A protein domain that is present in several copies in most tumour-necrosis factor receptors (TNFRs) and that contains up to six cysteine residues, which form up to three disulphide bonds. CRDs are named according to their position in TNFRs and typically CRD2 and CRD3 are required for binding of the receptors to members of the TNF superfamily.

Immunoreceptor tyrosine-based inhibitory motif

(ITIM). A short peptide motif (Ile/Val/Leu/Ser-X-Tyr-X-X-Leu/Val; in which X denotes any amino acid) that is present in the cytoplasmic domain of inhibitory receptors. When the tyrosine residue is phosphorylated, ITIMs recruit lipid or tyrosine phosphatases that mediate the inhibitory function of these receptors.

Immunoreceptor tyrosine-based activation motif

A structural motif containing tyrosine residues, which is found in the cytoplasmic tails of several signalling molecules. The motif has the form Tyr-X-X-(Leu/Ile), in which X denotes any amino acid, and the tyrosine is a target for phosphorylation by SRC tyrosine kinases and subsequent binding of proteins containing SRC-homology 2 domains.

Nuclear factor-κB

(NF-κB). A family of transcription factors (including NF-κB1 (also known as p50), NF-κB2 (also known as p52), cREL, RELA and RELB) that is important for pro-inflammatory and anti-apoptotic responses and for the development of lymphoid tissues. Each of these responses is mediated by canonical and non-canonical signalling pathways.

Death receptor

A cell-surface receptor that can mediate cell death following ligand-induced trimerization. The best-studied members of the death-receptor family include tumour-necrosis factor (TNF) receptor 1, CD95 and two receptors for TNF-related apoptosis-inducing ligand (TRAILR1 and TRAILR2).

Lipid raft

A cholesterol- and glycosphingolipid-rich region of the plasma membrane that provides ordered structure to the lipid bilayer and can include or exclude specific signalling molecules and complexes.

Activator protein 1

A transcription factor complex composed of a heterodimer of JUN and FOS subunits that is necessary for the induction of interleukin-2 transcription in T cells. JUN and FOS subunits are members of a family of leucine-zipper-containing proteins that are induced following activation of extracellular-signal-regulated kinase and JUN N-terminal kinase.

Mitogen-activated protein kinase

A family of serine/threonine kinases that are activated by various mitogenic stimuli and lead to the activation of extracellular-signal-regulated kinase, JUN N-terminal kinase or p38.

Phosphoinositide 3-kinase

(PI3K). A lipid kinase that generates phosphatidylinositol-3,4,5-trisphosphate, which can be bound by pleckstrin-homology-domain-containing proteins, such as protein kinase B. PI3K activation is often associated with survival signals and the activity of anti-apoptotic proteins.

SRC family kinases

A group of structurally related cytoplasmic and membrane-associated enzymes that is named after its prototypical member, SRC. In haematopoietic cells, SRC kinases are the first protein tyrosine kinases to become activated after stimulation through the immunoreceptor. They phosphorylate ITAMs of the immunoreceptors, thereby providing binding sites for SRC homology 2 (SH2)-domain-containing molecules, such as SYK.

Fratricide

A form of cell killing in which one of a group of similar cells kills another member or members of the group.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Šedý, J., Spear, P. & Ware, C. Cross-regulation between herpesviruses and the TNF superfamily members. Nat Rev Immunol 8, 861–873 (2008). https://doi.org/10.1038/nri2434

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2434

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing