Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Fetal B-cell lymphopoiesis and the emergence of B-1-cell potential

Key Points

  • Two populations of B cells, B-1 cells and B-2 cells, have been described in mice. B-2 cells are produced in the bone marrow during postnatal life. Most B cells in peripheral lymphoid tissues are B-2 cells and they are generally involved in adaptive immune responses. B-1 cells are a minor population of B cells; they constitute a high proportion of B cells in serous cavities and are generally effectors of innate immune responses.

  • B-cell development initiates during embryogenesis. Cells with B-cell potential are present in multiple intra-embryonic and extra-embryonic tissues. However, B-cell potential seems to be initially associated with the intra-embryonic para-aortic splanchnopleura.

  • There is strong circumstantial evidence that the potential of haematopoietic precursors to produce B-1 cells arises before B-2-cell potential.

  • There has been considerable debate regarding the origin of B-1 cells. The selection model proposes that they are generated from surface-IgM-expressing B-2 cells in response to specific types of antigen. The lineage model proposes that B-1 and B-2 cells are distinct lineages with separate progenitors. The recent description of a population of CD19+CD45−/low cells that can only produce B-1 cells provides support for the lineage model.

  • Progenitors with B-1-cell potential are preferentially produced in the embryo and B-2-cell progenitors arise late during embryogenesis and are preferentially produced in the adult. It is not clear why this is the case, although differences in the fetal and adult environment may be a factor.

  • Much needs to be learned about human B-cell development. There is circumstantial evidence that B-1 cells are present in humans, but further investigation of this issue is needed.

Abstract

Most B cells in peripheral lymphoid tissues are produced in adult bone marrow and are referred to as B-2 cells. A minor B-cell population, known as the B-1-cell population, that is mainly involved in innate immune responses has been identified in mice. In contrast to B-2 cells, B-1-cell progenitors are produced most efficiently during fetal life. This Review focuses on the emergence of B-1-cell potential during embryogenesis, summarizes recent advances in the delineation of a fetal B-1-cell-specified progenitor, and discusses the possibility that distinct fetal and adult B-cell developmental programmes might be operative in humans.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Emergence of B-cell precursor potential during embryogenesis.
Figure 2: B-2-cell development in adult bone marrow.
Figure 3: Models of fetal B-cell development.

Similar content being viewed by others

References

  1. Hardy, R. R. & Hayakawa, K. B cell development pathways. Annu. Rev. Immunol. 19, 595–621 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Nagasawa, T. Microenvironmental niches in the bone marrow required for B-cell development. Nature Rev. Immunol. 6, 107–116 (2006).

    Article  CAS  Google Scholar 

  3. Pelayo, R., Welner, R. S., Nagai, Y. & Kincade, P. W. Life before the pre-B cell receptor checkpoint: specification and commitment of primitive lymphoid progenitors in adult bone marrow. Semin. Immunol. 18, 2–11 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Baba, Y., Pelayo, R. & Kincade, P. W. Relationships between hematopoietic stem cells and lymphocyte progenitors. Trends Immunol. 25, 645–649 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Pillai, S., Cariappa, A. & Moran, S. T. Marginal zone B cells. Annu. Rev. Immunol. 23, 161–196 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Kroese, F. G., Ammerlaan, W. A. & Deenen, G. J. Location and function of B-cell lineages. Ann. NY Acad. Sci. 651, 44–58 (1992).

    Article  CAS  PubMed  Google Scholar 

  7. Kantor, A. B. & Herzenberg, L. A. Origin of murine B cell lineages. Annu. Rev. Immunol. 11, 501–538 (1993).

    Article  CAS  PubMed  Google Scholar 

  8. Nishimura, H., Hattori, S., Abe, M., Hirose, S. & Shirai, T. Differential expression of a CD45R epitope(6B2) on murine CD5+ B cells: possible difference in the post-translational modification of CD45 molecules. Cell. Immunol. 140, 432–443 (1992).

    Article  CAS  PubMed  Google Scholar 

  9. Martin, F. & Kearney, J. F. B1 cells: similarities and differences with other B cell subsets. Curr. Opin. Immunol. 13, 195–201 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Berland, R. & Wortis, H. H. Origins and functions of B-1 cells with notes on the role of CD5. Annu. Rev. Immunol. 20, 253–300 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Montecino-Rodriguez, E. & Dorshkind, K. New perspectives in B-1 B cell development and function. Trends Immunol. 27, 428–433 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Hardy, R. R. B-1 B cell development. J. Immunol. 177, 2749–2754 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Hardy, R. R. B-1 B cells: development, selection, natural autoantibody and leukemia. Curr. Opin. Immunol. 18, 547–555 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Hardy, R. R., Carmack, C. E., Shinton, S. A., Riblet, R. J. & Hayakawa, K. A single VH gene is utilized predominantly in anti-BrMRBC hybridomas derived from purified Ly-1 B cells. Definition of the VH11 family. J. Immunol. 142, 3643–3651 (1989).

    CAS  PubMed  Google Scholar 

  15. Baumgarth, N., Tung, J. W. & Herzenberg, L. A. Inherent specificities in natural antibodies: a key to immune defense against pathogen invasion. Springer Semin. Immunopathol. 26, 347–362 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Haas, K. M., Poe, J. C., Steeber, D. A. & Tedder, T. F. B-1a and B-1b cells exhibit distinct developmental requirements and have unique functional roles in innate and adaptive immunity to S. pneumoniae. Immunity 23, 7–18 (2005). This paper, along with reference 17, describes a division of labour between B-1a and B-1b cells and documents that both cell populations are needed for effective protection against encapsulated bacteria.

    Article  CAS  PubMed  Google Scholar 

  17. Alugupalli, K. R. et al. B1b lymphocytes confer T cell-independent long-lasting immunity. Immunity 21, 379–390 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Hsu, M. C., Toeliner, K. M., Vinuesa, C. G. & MacLennan, I. C. B cell clones that sustain long-lasting plasmablast growth in T-independent extrafollicular antibody responses. Proc. Natl Acad. Sci. USA 103, 5905–5910 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Alugupalli, K. R. & Gerstein, R. M. Divide and conquer: division of labor by B-1 B cells. Immunity 23, 1–2 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Herzenberg, L. A. & Tung, J. W. B cell lineages: documented at last! Nature Immunol. 7, 225–226 (2006).

    Article  CAS  Google Scholar 

  21. Lam, K. P. & Rajewsky, K. B cell antigen receptor specificity and surface density together determine B-1 versus B-2 cell development. J. Exp. Med. 190, 471–477 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Haughton, G., Arnold, L. W., Whitmore, A. C. & Clarke, S. H. B-1 cells are made, not born. Immunol. Today 14, 84–87 (1993).

    Article  CAS  PubMed  Google Scholar 

  23. Wortis, H. H. & Berland, R. Origins of B-1 B cells. J. Immunol. 166, 2163–2166 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Wortis, H. H., Teutsch, M., Higer, M., Zheng, J. & Parker, D. C. B-cell activation by crosslinking of surface IgM or ligation of CD40 involves alternative signal pathways and results in different B-cell phenotypes. Proc. Natl Acad. Sci. USA 92, 3348–3352 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rothstein, T. L., Kolber, D. L., Murphy, T. P. & Cohen, D. P. Induction of phorbol ester responsiveness in conventional B cells after activation via surface Ig. J. Immunol. 147, 3728–3735 (1991).

    CAS  PubMed  Google Scholar 

  26. Arnold, L. W., Pennell, C. A., McCray, S. K. & Clarke, S. H. Develoment of B-1 cells: segration of phosphatidylcholine-specific B cells to the B-1 populations occurs after immunoglobulin gene expression. J. Exp. Med. 179, 1585–1595 (1994).

    Article  CAS  PubMed  Google Scholar 

  27. Hayakawa, K. & Hardy, R. R. Development and function of B-1 cells. Curr. Opin. Immunol. 12, 346–353 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Martin, F., Oliver, A. M. & Kearney, J. F. Marginal zone and B1 B cells unite in the early response against T-independent blood-borne particulate antigens. Immunity 14, 617–629 (2001). The results of this study show that splenic marginal-zone and B-1 cells have overlapping functions.

    Article  CAS  PubMed  Google Scholar 

  29. Kantor, A. B., Stall, A. M., Adams, S., Herzenberg, L. A. & Herzenberg, L. A. Differential development of progenitor activity for three B-cell lineages. Proc. Natl Acad. Sci. USA 89, 3320–3324 (1992). An important study showing that the potential to produce B-1a, B-1b and B-2 cells arises at different times during development.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hardy, R. R. & Hayakawa, K. A developmental switch in B lymphopoiesis. Proc. Natl Acad. Sci. USA 88, 11550–11554 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Montecino-Rodriguez, E., Leathers, H. & Dorshkind, K. Identification of a B-1 B cell-specified progenitor. Nature Immunol. 7, 293–301 (2006). This paper describes the phenotypic isolation of a B-1-cell-specified progenitor in fetal and adult haematopoietic tissues.

    Article  CAS  Google Scholar 

  32. Vosshenrich, C. A., Cumano, A., Muller, W., Di Santo, J. P. & Vieira, P. Thymic-stromal-derived lymphopoietin distinguishes fetal from adult B cell development. Nature Immunol. 4, 773–779 (2003).

    Article  CAS  Google Scholar 

  33. Vosshenrich, C. A., Cumano, A., Muller, W., Di Santo, J. P. & Vieira, P. Pre-B cell receptor expression is necessary for thymic stromal lymhopoietin responsiveness in the bone marrow but not in the liver environment. Proc. Natl Acad. Sci. USA 101, 11070–11075 (2004). This interesting paper shows that fetal and adult B-cell progenitors have different cytokine requirements.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mikkola, H. K. & Orkin, S. H. The journey of developing hematopoietic stem cells. Development 133, 3733–3744 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Mikkola, H. K., Gekas, C., Orkin, S. H. & Dieterlen-Lievre, F. Placenta as a site for hematopoietic stem cell development. Exp. Hematol. 33, 1048–1054 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Godin, I. & Cumano, A. Of birds and mice: hematopoietic stem cell development. Int. J. Dev. Biol. 49, 251–257 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Dzierzak, E. The emergence of definitive hematopoietic stem cells in the mammal. Curr. Opin. Hematol. 12, 197–202 (2005).

    Article  PubMed  Google Scholar 

  38. Tyan, M. L. & Herzenberg, L. A. Studies on the ontogeny of the mouse immune system. II. Immunoglobulin-producing cells. J. Immunol. 101, 446–450 (1968).

    CAS  PubMed  Google Scholar 

  39. Ogawa, M. et al. B cell ontogeny in murine embryo studied by a culture system with the monolayer of a stromal cell clone, ST2: B cell progenitor develops first in the embryonal body rather than in the yolk sac. EMBO J. 7, 1337–1343 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cumano, A., Furlonger, C. & Paige, C. J. Differentiation and characterization of B-cell precursors detected in the yolk sac and embryo body of embryos beginning at the 10- to 12-somite stage. Proc. Natl Acad. Sci. USA 90, 6429–6433 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Paige, C. J., Kincade, P. W., Moore, M. A. & Lee, G. The fate of fetal and adult B-cell progenitors grafted into immunodeficient CBA/N mice. J. Exp. Med. 150, 548–563 (1979).

    Article  CAS  PubMed  Google Scholar 

  42. Huang, H., Zettergren, L. D. & Auerbach, R. In vitro differentiation of B cells and myeloid cells from the early mouse embryo and its extraembryonic yolk sac. Exp. Hematol. 22, 19–25 (1994).

    CAS  PubMed  Google Scholar 

  43. Godin, I., Dieterlen-Lievre, F. & Cumano, A. Emergence of multipotent hemopoietic cells in the yolk sac and paraaortic splanchnopleura in mouse embryos, beginning at 8.5 days postcoitus. Proc. Natl Acad. Sci. USA 92, 773–777 (1995). This study shows that B-cell developmental potential is associated with the intra-embryonic PAS before the yolk sac.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ferkowicz, M. J. & Yoder, M. C. Blood island formation: longstanding observations and modern interpretations. Exp. Hematol. 33, 1041–1047 (2005).

    Article  PubMed  Google Scholar 

  45. Palis, J. & Yoder, M. C. Yolk-sac hematopoiesis: the first blood cells of mouse and man. Exp. Hematol. 29, 927–936 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Jaffredo, T. et al. From hemangioblast to hematopoietic stem cell: an endothelial connection? Exp. Hematol. 33, 1029–1040 (2005).

    Article  PubMed  Google Scholar 

  47. Cumano, A., Ferraz, J. C., Klaine, M., Di Santo, J. P. & Godin, I. Intraembryonic, but not yolk sac hematopoietic precursors, isolated before circulation, provide long-term multilineage reconstitution. Immunity 15, 477–485 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Cumano, A., Dieterlen-Lievre, F. & Godin, I. Lymphoid potential, probed before circulation in mouse, is restricted to caudal intraembryonic splanchnopleura. Cell 86, 907–916 (1996).

    Article  CAS  PubMed  Google Scholar 

  49. Sugiyama, D. et al. B cell potential can be obtained from pre-circulatory yolk sac, but with low frequency. Dev. Biol. 301, 53–61 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Yoder, M. C. et al. Characterization of definitive lymphohematopoietic stem cells in the day 9 murine yolk sac. Immunity 7, 335–344 (1997).

    Article  CAS  PubMed  Google Scholar 

  51. Yoder, M. C., Hiatt, K. & Mukherjee, P. In vivo repopulating hematopoietic stem cells are present in the murine yolk sac at day 9.0 postcoitus. Proc. Natl Acad. Sci. USA 94, 6776–6780 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Melchers, F. Murine embryonic B lymphocyte development in the placenta. Nature 277, 219–221 (1979).

    Article  CAS  PubMed  Google Scholar 

  53. Melchers, F. & Abramczuk, J. Murine embryonic blood between day 10 and 13 of gestation as a source of immature precursor B cells. Eur. J. Immunol. 10, 763–767 (1980).

    Article  CAS  PubMed  Google Scholar 

  54. Sanchez, M. J., Holmes, A., Miles, C. & Dzierzak, E. Characterization of the first definitive hematopoietic stem cells in the AGM and liver of the mouse embryo. Immunity 5, 513–525 (1996).

    Article  CAS  PubMed  Google Scholar 

  55. de Andres, B. et al. The first 3 days of B-cell development in the mouse embryo. Blood 100, 4074–4081 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Houssaint, E. Differentiation of the mouse hepatic priordium. II. Extrinsic origin of the haemopietic cell line. Cell Differentiation 10, 243–252 (1981).

    Article  CAS  PubMed  Google Scholar 

  57. Johnson, G. R. & Moore, M. A. Role of stem cell migration in initiation of mouse foetal liver haemopoiesis. Nature 258, 726–728 (1975).

    Article  CAS  PubMed  Google Scholar 

  58. Gekas, C., Dieterlen-Lievre, F., Orkin, S. H. & Mikkola, H. K. The placenta is a niche for hematopoietic stem cells. Dev. Cell 8, 365–375 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Andrew, T. A. & Owen, J. J. Studies on the earliest sites of B cell differentiation in the mouse embryo. Dev. Comp. Immunol. 2, 339–346 (1978).

    Article  CAS  PubMed  Google Scholar 

  60. Medlock, E. S., Landreth, K. S. & Kincade, P. W. Putative B lymphocyte lineage precursor cells in early murine embryos. Dev. Comp. Immunol. 8, 887–894 (1984).

    Article  CAS  PubMed  Google Scholar 

  61. Owen, J. J., Wright, D. E., Habu, S., Raff, M. C. & Cooper, M. D. Studies on the generation of B lymphocytes in fetal liver and bone marrow. J. Immunol. 118, 2067–2072 (1977).

    CAS  PubMed  Google Scholar 

  62. Raff, M. C., Megson, M., Owen, J. J. & Cooper, M. D. Early production of intracellular IgM by B-lymphocyte precursors in mouse. Nature 259, 224–226 (1976). This paper is one of the first to document B-cell production in the embryo.

    Article  CAS  PubMed  Google Scholar 

  63. Velardi, A. & Cooper, M. D. An immunofluorescence analysis of the ontogeny of myeloid, T, and B lineage cells in mouse hemopoietic tissues. J. Immunol. 133, 672–677 (1984).

    CAS  PubMed  Google Scholar 

  64. Hardy, R. & Hayakawa, K. Generation of Ly-1 B cells from developmentally distinct precursors. Enrichment by stromal-cell culture or cell sorting. Ann. NY Acad. Sci. 651, 99–111 (1992).

    Article  CAS  PubMed  Google Scholar 

  65. Hardy, R. R., Hayakawa, K., Parks, D. R., Herzenberg, L. A. & Herzenberg, L. A. Murine B cell differentiation lineages. J. Exp. Med. 159, 1169–1188 (1984). This study shows that fetal liver B-cell production is biased towards the B-1-cell lineage, whereas adult bone marrow preferentially produces B-2 cells.

    Article  CAS  PubMed  Google Scholar 

  66. Herzenberg, L. A. B-1 cells: the lineage question revisited. Immunol. Rev. 175, 9–22 (2000).

    Article  CAS  PubMed  Google Scholar 

  67. Godin, I. E., Garcia-Porrero, J. A., Coutinho, A., Dieterlen-Lievre, F. & Marcos, M. A. Para-aortic splanchnopleura from early mouse embryos contains B1a cell progenitors. Nature 364, 67–70 (1993). An interesting study that indicates that the potential to produce B-1a cells arises first during embryogenesis.

    Article  CAS  PubMed  Google Scholar 

  68. Yokota, T. et al. Tracing the first waves of lymphopoiesis in mice. Development 133, 2041–2051 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Hardy, R. R., Carmack, C. E., Shinton, S. A., Kemp, J. D. & Hayakawa, K. Resolution and characterization of pro-B and pre-pro-B cell stages in normal mouse bone marrow. J. Exp. Med. 173, 1213–1225 (1991). This landmark paper describes the phenotypic resolution of developing B-lineage cells in mouse bone marrow and a scheme of B-cell development that is used by most laboratories.

    Article  CAS  PubMed  Google Scholar 

  70. Rumfelt, L. L., Zhou, Y., Rowley, B. M., Shinton, S. A. & Hardy, R. R. Lineage specification and plasticity in CD19 early B cell precursors. J. Exp. Med. 203, 675–687 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Li, Y. S., Wasserman, R., Hayakawa, K. & Hardy, R. R. Identification of the earliest B lineage stage in mouse bone marrow. Immunity 5, 527–535 (1996).

    Article  CAS  PubMed  Google Scholar 

  72. Tudor, K. S., Payne, K. J., Yamashita, Y. & Kincade, P. W. Functional assessment of precursors from murine bone marrow suggests a sequence of early B lineage differentiation events. Immunity 12, 335–345 (2000).

    Article  CAS  PubMed  Google Scholar 

  73. Miller, J. P. et al. The earliest step in B lineage differentiation from common lymphoid progenitors is critically dependent upon interleukin 7. J. Exp. Med. 196, 705–711 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Montecino-Rodriguez, E., Leathers, H. & Dorshkind, K. Bipotential B-macrophage progenitors are present in adult bone marrow. Nature Immunol. 2, 83–88 (2001).

    Article  CAS  Google Scholar 

  75. Lacaud, G., Carlsson, L. & Kellter, G. Identification of a fetal hematopoietic precursor with B cell, T cell, and macrophage potential. Immunity 9, 827–838 (1998).

    Article  CAS  PubMed  Google Scholar 

  76. Narendran, A., Cumano, A., Dorshkind, K. & Paige, C. J. The stromal cell line S17 supports the growth of lipopolysaccharide-stimulated CBA/N spleen cell colonies in vitro. Eur. J. Immunol. 22, 1001–1006 (1992).

    Article  CAS  PubMed  Google Scholar 

  77. Tung, J. W., Mrazek, M. D., Yang, Y., Herzenberg, L. A. & Herzenberg, L. A. Phenotypically distinct B cell development pathways map to the three B cell lineages in the mouse. Proc. Natl Acad. Sci. USA 103, 6293–6298 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hardy, R. R., Wei, C. J. & Hayakawa, K. Selection during development of VH11+ B cells: a model for natural autoantibody-producing CD5+ B cells. Immunol. Rev. 197, 60–74 (2004).

    Article  CAS  PubMed  Google Scholar 

  79. Wang, H. & Clarke, S. H. Postivie selection focuses the VH12 B-cell repertoire towards a single B1 development and heavy chain allelic exclusion. Immunol. Rev. 197, 51–59 (2004).

    Article  CAS  PubMed  Google Scholar 

  80. Wen, L. et al. Evidence of marginal-zone B cell-positive selection in the spleen. Immunity 23, 297–308 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Ikuta, K. et al. A developmental switch in thymic lymphocyte maturation potential occurs at the level of hematopoietic stem cells. Cell 62, 863–874 (1990).

    Article  CAS  PubMed  Google Scholar 

  82. Shen, R. R. et al. Dysregulated TCL1 requires the germinal center and genome instability for mature B-cell transformation. Blood 108, 1991–1998 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ye, M., Ermakova, O. & Graf, T. PU.1 is not strictly required for B cell development and its absence induces a B-2 to B-1 cell switch. J. Exp. Med. 202, 1411–1422 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Rosenbauer, F. et al. Lymphoid cell growth and transformation are suppressed by a key regulatory element of the gene encoding PU.1. Nature Genet. 38, 27–37 (2006).

    Article  CAS  PubMed  Google Scholar 

  85. Witt, C. M., Hurez, V., Swindle, C. S., Hamada, Y. & Klug, C. A. Activated Notch2 potentiates CD8 lineage maturation and promotes the selective development of B1 B cells. Mol. Cell. Biol. 23, 8637–8650 (2003).

    Article  CAS  PubMed  Google Scholar 

  86. Carvalho, T. L., Mota-Santos, T., Cumano, A., Demengeot, J. & Vieira, P. Arrested B lymphopoiesis and persistance of activated B cells in adult interleukin 7−/− mice. J. Exp. Med. 194, 1141–1150 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Vosshenrich, C. A., Cumano, A., Muller, W., Di Santo, J. P. & Vieira, P. Pre-B cell receptor expression is necessary for thymic stromal lymphopoietic responsiveness in the bone marrow but not in the liver environment. Proc. Natl Acad. Sci. USA 101, 11070–11075 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Hamilton, A. M., Lehuen, A. & Kearney, J. F. Immunofluorescence analysis of B-1 cell ontogeny in the mouse. Int. Immunol. 6, 355–361 (1994).

    Article  CAS  PubMed  Google Scholar 

  89. Wardemann, H., Boehm, T., Dear, N. & Carsetti, R. B-1a B cells that link the innate and adaptive immune responses are lacking in the absence of the spleen. J. Exp. Med. 195, 771–780 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Hastings, W. D., Tumang, J. R., Behrens, T. W. & Rothstein, T. L. Peritoneal B-2 cells comprise a distinct B-2 cell population with B-1b-like characteristics. Eur. J. Immunol. 36, 1114–1123 (2006).

    Article  CAS  PubMed  Google Scholar 

  91. Allman, D. et al. Resolution of three nonproliferative immature splenic B cell subsets reveals multiple selection points during peripheral B cell maturation. J. Immunol. 167, 6834–6840 (2001).

    Article  CAS  PubMed  Google Scholar 

  92. Hofman, F. M., Danilovs, J., Husmann, L. & Taylor, C. R. Ontogeny of B cell markers in the human fetal liver. J. Immunol. 133, 1197–1201 (1984).

    CAS  PubMed  Google Scholar 

  93. Gathings, W. E., Lawton, A. R. & Cooper, M. D. Immunofluroescent studies of the development of pre-B cells, B lymphocytes and immunoglobulin isotype diversity in humans. Eur. J. Immunol. 7, 804–810 (1977).

    Article  CAS  PubMed  Google Scholar 

  94. Carsetti, R., Rosado, M. M. & Wardmann, H. Peripheral development of B cells in mouse and man. Immunol. Rev. 197, 179–191 (2004).

    Article  PubMed  Google Scholar 

  95. Donze, H. H. et al. Human peritoneal B-1 cells and the influence of continuous amulatory peritoneal dialysis on peritoneal and peripheral blood mononuclear cell (PBMC) composition and immunoglobulin levels. Clin. Exp. Immunol. 109, 356–361 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Bofill, M. et al. Human B cell development. II. Subpopulations in the human fetus. J. Immunol. 134, 1531–1538 (1985).

    CAS  PubMed  Google Scholar 

  97. Solvason, N. & Kearney, J. F. The human fetal omentum: a site of B cell generation. J. Exp. Med. 175, 397–404 (1992).

    Article  CAS  PubMed  Google Scholar 

  98. Bhat, N. M. et al. The ontogeny and functional characteristics of human B-1 (CD5+ B) cells. Int. Immunol. 4, 243–252 (1992).

    Article  CAS  PubMed  Google Scholar 

  99. Jefferson, T., Ferroni, E., Curtale, F., Giorgi Rossi, P. & Borgia, P. Streptococcus pneumoniae in western Europe: serotype distribution and incidence in children less than 2 years old. Lancet Infect. Dis. 6, 405–410 (2006).

    Article  PubMed  Google Scholar 

  100. Obaro, S. K. & Madhi, S. A. Bacterial pneumonia vaccines and childhood pneumonia: are we winning, refining, or redefining? Lancet Infect. Dis. 6, 150–161 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Forster, I., Gu, H. & Rajewsky, K. Germline antibody V regions as determinants of clonal persistence and malignant growth in the B cell compartment. EMBO J. 7, 3693–3703 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Damle, R. N. et al. Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia. Blood 94, 1840–1847 (1999).

    CAS  PubMed  Google Scholar 

  103. Hamblin, T. J., Davis, Z., Gardiner, A., Oscier, D. G. & Stevenson, F. K. Unmutated Ig VH genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood 94, 1848–1854 (1999).

    CAS  PubMed  Google Scholar 

  104. Copelan, E. A. Hematopoietic stem-cell transplantation. N. Engl. J. Med. 354, 1813–1826 (2006).

    Article  CAS  PubMed  Google Scholar 

  105. Parkman, R. & Weinberg, K. I. Immunological reconstitution following bone marrow transplantation. Immunol. Rev. 157, 73–78 (1997).

    Article  CAS  PubMed  Google Scholar 

  106. Burt, R. K. et al. Embryonic stem cells as an alternate marrow donor source: engraftment without graft-versus-host disease. J. Exp. Med. 199, 895–904 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Vodyanik, M. A., Bork, J. A., Thomson, J. A. & Slukvin, I. I. Human embryonic stem cell-derived CD34+ cells: efficient production in the coculture with OP9 stromal cells and analysis of lymphohematopoietic potential. Blood 105, 617–626 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank H. Mikkola for her review of the manuscript. The original work from our laboratory reported herein was supported by the National Institutes of Health, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth Dorshkind.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Kenneth Dorshkind's homepage

Glossary

Marginal-zone B cell

A sessile, mature B-cell subset that co-localizes to the spleen marginal zone, which is located at the border of the white pulp.

Follicular B cell

A re-circulating, mature B-cell subset that populates the follicles of the spleen and lymph nodes.

CD45R

A member of the CD45 leukocyte common antigen family that includes glycoproteins of multiple sizes generated by alternative splicing of the CD45 mRNA and subsequent glycosylation of the CD45 protein. Two 220 kDa molecular weight isoforms of CD45, CD45R and CD45RA, have been described and are distinguished by distinct patterns of glycosylation. Although the term B220 has been used interchangeably to describe both molecules, the antibodies used to identify the B-1-cell progenitors31 referred to in this Review specifically recognize the CD45R determinant.

B-cell receptor

The cell-surface receptor on mature B cells, composed of the transmembrane immunoglobulin molecule associated with the Igα and Igβ chains.

Para-aortic splanchnopleura

(PAS). The embryonic tissue formed by the association of the mesoderm and endoderm. It is located on either side of the aorta. The AGM region subsequently develops from the PAS.

Aorta–gonad–mesonephros

(AGM). An embryonic site in which the development of definitive haematopoietic stem cells (HSCs) occurs. It comprises the aorta, and developing reproductive and excretory (mesonephros) systems. In this haematogenic site, HSCs are concentrated in the aorta region.

γδ T cells

T cells that express heterodimers consisting of the γ- and δ-chains of the T-cell receptor. They are mainly present in the intestinal epithelium as intraepithelial lymphocytes (IELs). Although the exact function of γδ T cells (or IELs) is still unknown, it has been proposed that mucosal γδ T cells are involved in the innate immune responses of the mucosal immune system.

Omentum

A generic term that refers to folds of the peritoneum. The lesser omentum consists of two layers of peritoneum and passes between the liver and the stomach. The greater omentum consists of four layers of peritoneum that extend below the stomach.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dorshkind, K., Montecino-Rodriguez, E. Fetal B-cell lymphopoiesis and the emergence of B-1-cell potential. Nat Rev Immunol 7, 213–219 (2007). https://doi.org/10.1038/nri2019

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2019

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing