Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Somatic hypermutation at A·T pairs: polymerase error versus dUTP incorporation

Abstract

Somatic hypermutation of immunoglobulin genes occurs at both C·G pairs and A·T pairs. Mutations at C·G pairs are created by activation-induced deaminase (AID)-catalysed deamination of C residues to U residues. Mutations at A·T pairs are probably produced during patch repair of the AID-generated U·G lesion, but they occur through an unknown mechanism. Here, we compare the popular suggestion of nucleotide mispairing through polymerase error with an alternative possibility, mutation through incorporation of dUTP (or another non-canonical nucleotide).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The DNA-deamination mechanism of somatic hypermutation.
Figure 2: Possible schemes for phase 2 mutation, yielding substitutions at A·T pairs.
Figure 3: Spectra of nucleotide substitutions.
Figure 4: Pathway of dUTP synthesis and breakdown in eukaryotes.

Similar content being viewed by others

References

  1. Burnet, F. M. A modification of Jerne's theory of antibody formation using the concept of clonal selection. Aust. J. Sci. 20, 67–69 (1957).

    Google Scholar 

  2. Lederberg, J. Genes and antibodies. Do antigens bear instructions for antibody specificity or do they select cell lines that arise by mutation? Science 129, 1649–1653 (1959).

    Article  CAS  PubMed  Google Scholar 

  3. Hilschmann, N. & Craig, L. C. Amino acid sequence studies with Bence–Jones proteins. Proc. Natl Acad. Sci. USA 53, 1403–1409 (1965).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Titani, K., Whitley, E., Avogardo, L. & Putnam, F. W. Immunoglobulin structure: partial amino acid sequence of a Bence Jones protein. Science 152, 1513–1516 (1966).

    Article  CAS  PubMed  Google Scholar 

  5. Milstein, C. Variations in amino acid sequence near the disulphide bridges of Bence–Jones proteins. Nature 209, 370–373 (1966).

    Article  CAS  PubMed  Google Scholar 

  6. Brenner, S. & Milstein, C. Origin of antibody variation. Nature 211, 242–243 (1966).

    Article  CAS  PubMed  Google Scholar 

  7. Speyer, J. F. Mutagenic DNA polymerase. Biochem. Biophys. Res. Commun. 21, 6–8 (1965).

    Article  CAS  PubMed  Google Scholar 

  8. Yanofsky, C., Cox, E. C. & Horn, V. The unusual mutagenic specificity of an E. coli mutator gene. Proc. Natl Acad. Sci. USA 55, 274–281 (1966).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tonegawa, S. Somatic generation of antibody diversity. Nature 302, 575–581 (1983).

    Article  CAS  PubMed  Google Scholar 

  10. Rajewsky, K. Clonal selection and learning in the antibody system. Nature 381, 751–758 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Parham, P. (ed.) Somatic hypermutation of immunoglobulin genes. Immunol. Rev. 162, 1–298 (1998).

    Google Scholar 

  12. Ohmori, H. et al. The Y-family of DNA polymerases. Mol. Cell 8, 7–8 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Neuberger, M. S., Harris, R. S., Di Noia, J. M. & Petersen-Mahrt, S. K. Immunity through DNA deamination. Trends Biochem. Sci. 28, 305–312 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Zeng, X. et al. DNA polymerase η is an A·T mutator in somatic hypermutation of immunoglobulin variable genes. Nature Immunol. 2, 537–541 (2001).

    Article  CAS  Google Scholar 

  15. Faili, A. et al. DNA polymerase η is involved in hypermutation occurring during immunoglobulin class switch recombination. J. Exp. Med. 199, 265–270 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zeng, X., Negrete, G. A., Kasmer, C., Yang, W. W. & Gearhart, P. J. Absence of DNA polymerase η reveals targeting of C mutations on the nontranscribed strand in immunoglobulin switch regions. J. Exp. Med. 199, 917–924 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Faili, A. et al. Induction of somatic hypermutation in immunoglobulin genes is dependent on DNA polymerase ι. Nature 419, 944–947 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Diaz, M., Verkoczy, L. K., Flajnik, M. F. & Klinman, N. R. Decreased frequency of somatic hypermutation and impaired affinity maturation but intact germinal center formation in mice expressing antisense RNA to DNA polymerase ζ. J. Immunol. 167, 327–335 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Zan, H. et al. The translesion DNA polymerase ζ plays a major role in Ig and BCL-6 somatic hypermutation. Immunity 14, 643–653 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Simpson, L. J. & Sale, J. E. Rev1 is essential for DNA damage tolerance and non-templated immunoglobulin gene mutation in a vertebrate cell line. EMBO J. 22, 1654–1664 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Petersen-Mahrt, S. K., Harris, R. S. & Neuberger, M. S. AID mutates E. coli suggesting a DNA deamination mechanism for antibody diversification. Nature 418, 99–104 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Pham, P., Bransteitter, R., Petruska, J. & Goodman, M. F. Processive AID-catalysed cytosine deamination on single-stranded DNA simulates somatic hypermutation. Nature 424, 103–107 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Chaudhuri, J. et al. Transcription-targeted DNA deamination by the AID antibody diversification enzyme. Nature 422, 726–730 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Bransteitter, R., Pham, P., Scharff, M. D. & Goodman, M. F. Activation-induced cytidine deaminase deaminates deoxycytidine on single-stranded DNA but requires the action of RNase. Proc. Natl Acad. Sci. USA 100, 4102–4107 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ramiro, A. R., Stavropoulos, P., Jankovic, M. & Nussenzweig, M. C. Transcription enhances AID-mediated cytidine deamination by exposing single-stranded DNA on the nontemplate strand. Nature Immunol. 4, 452–456 (2003).

    Article  CAS  Google Scholar 

  26. Sohail, A., Klapacz, J., Samaranayake, M., Ullah, A. & Bhagwat, A. S. Human activation-induced cytidine deaminase causes transcription-dependent, strand-biased C to U deaminations. Nucleic Acids Res. 31, 2990–2994 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Beale, R. C. et al. Comparison of the differential context-dependence of DNA deamination by APOBEC enzymes: correlation with mutation spectra in vivo. J. Mol. Biol. 337, 585–596 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Yu, K., Huang, F. T. & Lieber, M. R. DNA substrate length and surrounding sequence affect the activation-induced deaminase activity at cytidine. J. Biol. Chem. 279, 6496–6500 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Martin, A. et al. Activation-induced cytidine deaminase turns on somatic hypermutation in hybridomas. Nature 415, 802–806 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Yoshikawa, K. et al. AID enzyme-induced hypermutation in an actively transcribed gene in fibroblasts. Science 296, 2033–2036 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Di Noia, J. & Neuberger, M. S. Altering the pathway of IgV gene hypermutation by inhibiting uracil DNA glycosylase. Nature 419, 43–48 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Rada, C. et al. Immunoglobulin isotype switching is inhibited and somatic hypermutation perturbed in UNG-deficient mice. Curr. Biol. 12, 1748–1755 (2002).

    CAS  PubMed  Google Scholar 

  33. Imai, K. et al. Human uracil-DNA glycosylase deficiency associated with profoundly impaired immunoglobulin class-switch recombination. Nature Immunol. 4, 1023–1028 (2003).

    Article  CAS  Google Scholar 

  34. Rada, C., Ehrenstein, M. R., Neuberger, M. S. & Milstein, C. Hotspot focusing of somatic hypermutation in MSH2-deficient mice suggests two stages of mutational targeting. Immunity 9, 135–141 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. Phung, Q. H. et al. Increased hypermutation at G and C nucleotides in immunoglobulin variable genes from mice deficient in the MSH2 mismatch repair protein. J. Exp. Med. 187, 1745–1751 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Frey, S. et al. Mismatch repair deficiency interferes with the accumulation of mutations in chronically stimulated B cells and not with the hypermutation process. Immunity 9, 127–134 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Muramatsu, M. et al. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102, 553–563 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Revy, P. et al. Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the hyper-IgM syndrome (HIGM2). Cell 102, 565–575 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Wiesendanger, M., Kneitz, B., Edelmann, W. & Scharff, M. D. Somatic hypermutation in MutS homologue (MSH)3-, MSH6-, and MSH3/MSH6-deficient mice reveals a role for the MSH2–MSH6 heterodimer in modulating the base substitution pattern. J. Exp. Med. 191, 579–584 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Li, Z. B. et al. Examination of Msh6- and Msh3-deficient mice in class switching reveals overlapping and distinct roles of MutS homologues in antibody diversification. J. Exp. Med. 200, 47–59 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Martomo, S. A., Yang, W. W. & Gearhart, P. J. A role for Msh6 but not Msh3 in somatic hypermutation and class switch recombination. J. Exp. Med. 200, 61–68 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bardwell, P. D. et al. Altered somatic hypermutation and reduced class-switch recombination in exonuclease 1-mutant mice. Nature Immunol. 5, 224–229 (2004).

    Article  CAS  Google Scholar 

  43. Rada, C., Di Noia, J. M. & Neuberger, M. S. Mismatch recognition and uracil-excision provide complementary paths to both Ig switching and the A·T-focused phase of somatic mutation. Mol. Cell 16, 163–171 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Steele, E. J., Franklin, A. & Blanden, R. V. Genesis of the strand-biased signature in somatic hypermutation of rearranged immunoglobulin variable genes. Immunol. Cell Biol. 82, 209–218 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Glassner, B. J., Rasmussen, L. J., Najarian, M. T., Posnick, L. M. & Samson, L. D. Generation of a strong mutator phenotype in yeast by imbalanced base excision repair. Proc. Natl Acad. Sci. USA 95, 9997–10002 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Matsuda, T., Bebenek, K., Masutani, C., Hanaoka, F. & Kunkel, T. A. Low fidelity DNA synthesis by human DNA polymerase-η. Nature 404, 1011–1013 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Matsuda, T. et al. Error rate and specificity of human and murine DNA polymerase η. J. Mol. Biol. 312, 335–346 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Rogozin, I. B., Pavlov, Y. I., Bebenek, K., Matsuda, T. & Kunkel, T. A. Somatic mutation hotspots correlate with DNA polymerase η error spectrum. Nature Immunol. 2, 530–536 (2001).

    Article  CAS  Google Scholar 

  49. Pavlov, Y. I. et al. Correlation of somatic hypermutation specificity and A·T base pair substitution errors by DNA polymerase η during copying of a mouse immunoglobulin κ light chain transgene. Proc. Natl Acad. Sci USA 99, 9954–9959 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. McDonald, J. P. et al. 129-derived strains of mice are deficient in DNA polymerase ι and have normal immunoglobulin hypermutation. J. Exp. Med. 198, 635–643 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Johnson, R. E., Washington, M. T., Haracska, L., Prakash, S. & Prakash, L. Eukaryotic polymerases ι and ζ act sequentially to bypass DNA lesions. Nature 406, 1015–1019 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. Hochhauser, S. J. & Weiss, B. Escherichia coli mutants deficient in deoxyuridine triphosphatase. J. Bacteriol. 134, 157–166 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Guillet, M. & Boiteux, S. Origin of endogenous DNA abasic sites in Saccharomyces cerevisiae. Mol. Cell. Biol. 23, 8386–8394 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Tye, B. K., Nyman, P. O., Lehman, I. R., Hochhauser, S. & Weiss, B. Transient accumulation of Okazaki fragments as a result of uracil incorporation into nascent DNA. Proc. Natl Acad. Sci. USA 74, 154–157 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gadsden, M. H., McIntosh, E. M., Game, J. C., Wilson, P. J. & Haynes, R. H. dUTP pyrophosphatase is an essential enzyme in Saccharomyces cerevisiae. EMBO J. 12, 4425–4431 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. McIntosh, E. M., Gadsden, M. H. & Haynes, R. H. Transcription of genes encoding enzymes involved in DNA synthesis during the cell cycle of Saccharomyces cerevisiae. Mol. Gen. Genet. 204, 363–366 (1986).

    Article  CAS  PubMed  Google Scholar 

  57. Strahler, J. R. et al. Maturation stage and proliferation-dependent expression of dUTPase in human T cells. Proc. Natl Acad. Sci. USA 90, 4991–4995 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ladner, R. D. & Caradonna, S. J. The human dUTPase gene encodes both nuclear and mitochondrial isoforms. Differential expression of the isoforms and characterization of a cDNA encoding the mitochondrial species. J. Biol. Chem. 272, 19072–19080 (1997).

    Article  CAS  PubMed  Google Scholar 

  59. Bertocci, B. et al. Probing immunoglobulin gene hypermutation with microsatellites suggests a nonreplicative short patch DNA synthesis process. Immunity 9, 257–265 (1998).

    Article  CAS  PubMed  Google Scholar 

  60. Faili, A. et al. AID-dependent somatic hypermutation occurs as a DNA single-strand event in the BL2 cell line. Nature Immunol. 3, 815–821 (2002).

    Article  CAS  Google Scholar 

  61. Akbari, M. et al. Repair of U·G and U·A in DNA by UNG2-associated repair complexes takes place predominantly by short-patch repair both in proliferating and growth-arrested cells. Nucleic Acids Res. 32, 5486–5498 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Krokan, H. E., Drablos, F. & Slupphaug, G. Uracil in DNA — occurrence, consequences and repair. Oncogene 21, 8935–8948 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. Pearl, L. H. Structure and function in the uracil-DNA glycosylase superfamily. Mutat. Res. 460, 165–181 (2000).

    Article  CAS  PubMed  Google Scholar 

  64. Nilsen, H. et al. Uracil-DNA glycosylase (UNG)-deficient mice reveal a primary role of the enzyme during DNA replication. Mol. Cell 5, 1059–1065 (2000).

    Article  CAS  PubMed  Google Scholar 

  65. Lebecque, S. G. & Gearhart, P. J. Boundaries of somatic mutation in rearranged immunoglobulin genes: 5′ boundary is near the promoter, and 3′ boundary is approximately 1 kb from V(D)J gene. J. Exp. Med. 172, 1717–1727 (1990).

    Article  CAS  PubMed  Google Scholar 

  66. Milstein, C., Neuberger, M. S. & Staden, R. Both DNA strands of antibody genes are hypermutation targets. Proc. Natl Acad. Sci. USA 95, 8791–8794 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Harris, R. S. & Liddament, M. T. Retroviral restriction by APOBEC proteins. Nature Rev. Immunol. 4, 868–877 (2004).

    Article  CAS  Google Scholar 

  68. Chen, R., Wang, H. & Mansky, L. M. Roles of uracil-DNA glycosylase and dUTPase in virus replication. J. Gen. Virol. 83, 2339–2345 (2002).

    Article  CAS  PubMed  Google Scholar 

  69. Turelli, P., Guiguen, F., Mornex, J. F., Vigne, R. & Querat, G. dUTPase-minus caprine arthritis-encephalitis virus is attenuated for pathogenesis and accumulates G-to-A substitutions. J. Virol. 71, 4522–4530 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Lerner, D. L. et al. Increased mutation frequency of feline immunodeficiency virus lacking functional deoxyuridine-triphosphatase. Proc. Natl Acad. Sci. USA 92, 7480–7484 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Liu, M. et al. Reverse transcriptase-mediated tropism switching in Bordetella bacteriophage. Science 295, 2091–2094 (2002).

    Article  CAS  PubMed  Google Scholar 

  72. Boeke, J. D. Evolution: A is for adaptation. Nature 431, 408–409 (2004).

    Article  CAS  PubMed  Google Scholar 

  73. Friedberg, E. C., Walker, G. C. & Siede, W. Deoxyribonucleic acid and mutagenesis (American Society for Microbiology Press, Washington DC, 1995).

    Google Scholar 

  74. Kornberg, A. DNA Replication (Freeman, San Francisco, 1980).

    Google Scholar 

  75. Ludwig, D. L. et al. A murine AP-endonuclease gene-targeted deficiency with post-implantation embryonic progression and ionizing radiation sensitivity. Mutat. Res. 409, 17–29 (1998).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael S. Neuberger.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez Gene

AID

DNA polymerase-ζ

DNA polymerase-η

DNA polymerase-ι

exonuclease-1

MSH2

MSH6

UNG

Glossary

ABASIC SITE

A site in DNA where a nucleotide base has been removed by cleavage of the glycosidic bond that links the nucleotide base to the deoxyribose-phosphate backbone.

BASE-EXCISION REPAIR

A repair pathway that recognizes and eliminates from DNA particular non-canonical bases (such as deaminated or oxidized bases), replacing them with an appropriate base templated on the opposite strand.

CLONAL-SELECTION THEORY

A theory to account for the specificity of the adaptive humoral immune response, in which unknown processes were assumed to mediate the generation of diverse precursor cells, thereby resulting in the production of antibodies of different specificities. Antigen-mediated selection would then trigger clonal expansion and antibody secretion by those cells that produce a cognate antibody.

LESION-BYPASS DNA POLYMERASE

A DNA polymerase that can synthesize past a lesion (such as an abasic site or a base adduct) in the template strand.

LOW-FIDELITY DNA POLYMERASES

DNA polymerases that have a considerably higher rate of nucleotide misincorporation than the DNA polymerases that carry out normal chromosomal replication of the genome of the cell, so they frequently generate mismatched base pairs.

MISMATCH REPAIR

A repair pathway that recognizes and corrects mismatched base pairs, typically those that arise from errors of chromosomal DNA replication.

PATCH REPAIR

Repair of a DNA lesion by degrading a short patch of DNA on the damaged strand and resynthesizing it using the other strand as a template. The repair usually occurs at a time distinct from that at which the genome is replicated.

S PHASE

(Synthesis phase). The phase of the cell cycle during which the genomic DNA is replicated.

TRANSITION MUTATIONS

Base changes in DNA in which a pyrimidine (C or T) is replaced by another pyrimidine, or a purine (A or G) is replaced by another purine.

TRANSVERSION MUTATIONS

Base changes in DNA in which a pyrimidine (C or T) is replaced by a purine (A or G), or a purine is replaced by a pyrimidine.

WATSON–CRICK BASE PAIRING

The complementary alignment of purine (A or G) and pyrimidine (C, T or U) nucleotides on opposite nucleic-acid strands in pairings (C with G, and A with T or U) that allow maintenance of the double-helical conformation that was proposed by Watson and Crick.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neuberger, M., Noia, J., Beale, R. et al. Somatic hypermutation at A·T pairs: polymerase error versus dUTP incorporation. Nat Rev Immunol 5, 171–178 (2005). https://doi.org/10.1038/nri1553

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri1553

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing