Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Procoagulant therapeutics in liver disease: a critique and clinical rationale

Key Points

  • International normalized ratio values in liver disease might be falsely elevated, thus caution should be taken when using this value to consider fresh frozen plasma repletion

  • Cryoprecipitate should be used in the setting of fibrinogen deficiency for proper clot formation

  • Platelet transfusion to at least 50,000/dL can result in adequate thrombin production in the setting of liver disease

  • In cirrhosis patients with chronic inflammation, hyperfibrinolysis can be present and can be treated with antifibrinolytics to promote clot stabilization

  • The knowledge of the coagulation profile for cirrhosis patients is rapidly evolving, future studies might provide further insight into other procoagulant therapies

Abstract

The complex nature of haemostasis in patients with liver disease can result in bleeding and/or thrombosis. These opposing outcomes, which have multiple contributing factors, can pose diagnostic and therapeutic dilemmas for physicians. With the high rate of haemorrhagic complications in patients with cirrhosis, we examine the various procoagulants available for use in this population. In this Review, we describe the clinical and current rationale for using each of the currently available procoagulants—vitamin K, fresh frozen plasma (FFP), cryoprecipitate, platelets, recombinant factor VIIa (rFVIIa), antifibrinolytics, prothrombin concentrate complexes (PCC), desmopressin and red blood cells. By examining the evidence and use of these agents in liver disease, we provide a framework for targeted, goal-directed therapy with procoagulants.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Procoagulant blood products derived from whole blood.
Figure 2: Site and mechanism of action for procoagulant blood products.

Similar content being viewed by others

References

  1. Tripodi, A. & Mannucci, P. M. The coagulopathy of chronic liver disease. N. Engl. J. Med. 365, 147–156 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Northup, P. G. et al. Coagulopathy does not fully protect hospitalized cirrhosis patients from peripheral venous thromboembolism. Am. J. Gastroenterol. 101, 1524–1528 (2006).

    Article  PubMed  Google Scholar 

  3. Shah, N. L., Northup, P. G. & Caldwell, S. H. A clinical survey of bleeding, thrombosis and blood product use in decompensated cirrhosis patients. Ann. Hepatol. 11, 686–690 (2012).

    Article  PubMed  Google Scholar 

  4. Giannini, E. G. et al. Incidence of bleeding following invasive procedures in patients with thrombocytopenia and advanced liver disease. Clin. Gastroenterol. Hepatol. 8, 899–902 (2010).

    Article  PubMed  Google Scholar 

  5. Furie, B. & Furie, B. C. Molecular basis of vitamin K-dependent gamma-carboxylation. Blood 75, 1753–1762 (1990).

    CAS  PubMed  Google Scholar 

  6. Iber, F. L. et al. Vitamin K deficiency in chronic alcoholic males. Alcohol Clin. Exp. Res. 10, 679–681 (1986).

    Article  CAS  PubMed  Google Scholar 

  7. Saja, M. F. et al. The coagulopathy of liver disease: does vitamin K help? Blood Coagul. Fibrinolysis 24, 10–17 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Blanchard, R. A. et al. Acquired vitamin K-dependent carboxylation deficiency in liver disease. N. Engl. J. Med. 305, 242–248 (1981).

    Article  CAS  PubMed  Google Scholar 

  9. Choi, J. Y. et al. Diagnostic value of AFP-L3 and PIVKA-II in hepatocellular carcinoma according to total-AFP. World J. Gastroenterol. 19, 339–346 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Pereira, S. P. et al. Pharmacokinetics and efficacy of oral versus intravenous mixed-micellar phylloquinone (vitamin K1) in severe acute liver disease. J. Hepatol. 42, 365–370 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. O'Shaughnessy, D. F. et al. Guidelines for the use of fresh-frozen plasma, cryoprecipitate and cryosupernatant. Br. J. Haematol. 126, 11–28 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Dirckx, J. H. Armand J. Quick: pioneer and prophet of coagulation research. Ann. Intern. Med. 92, 553–558 (1980).

    Article  CAS  PubMed  Google Scholar 

  13. Trotter, J. F. et al. Changes in international normalized ratio (INR) and model for endstage liver disease (MELD) based on selection of clinical laboratory. Am. J. Transplant. 7, 1624–1628 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Lisman, T. et al. Interlaboratory variability in assessment of the model of end-stage liver disease score. Liver Int. 28, 1344–1351 (2008).

    Article  PubMed  Google Scholar 

  15. Stravitz, R. T. Potential applications of thromboelastography in patients with acute and chronic liver disease. Gastroenterol. Hepatol. (NY) 8, 513–520 (2012).

    Google Scholar 

  16. Youssef, W. I. et al. Role of fresh frozen plasma infusion in correction of coagulopathy of chronic liver disease: a dual phase study. Am. J. Gastroenterol. 98, 1391–1394 (2003).

    Article  PubMed  Google Scholar 

  17. Zimmon, D. S. & Kessler, R. E. The portal pressure-blood volume relationship in cirrhosis. Gut. 15, 99–101 (1974).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Moller, S., Bendtsen, F. & Henriksen, J. H. Effect of volume expansion on systemic hemodynamics and central and arterial blood volume in cirrhosis. Gastroenterology 109, 1917–1925 (1995).

    Article  CAS  PubMed  Google Scholar 

  19. Palascak, J. E. & Martinez, J. Dysfibrinogenemia associated with liver disease. J. Clin. Invest. 60, 89–95 (1977).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Boks, A. L. et al. Hemostasis and fibrinolysis in severe liver failure and their relation to hemorrhage. Hepatology 6, 79–86 (1986).

    Article  CAS  PubMed  Google Scholar 

  21. Northup, P. G. & Caldwell, S. H. Coagulation in liver disease: a guide for the clinician. Clin. Gastroenterol. Hepatol. 11, 1064–1074 (2013).

    Article  PubMed  Google Scholar 

  22. Giannini, E. G. & Savarino, V. Thrombocytopenia in liver disease. Curr. Opin. Hematol. 15, 473–480 (2008).

    Article  PubMed  Google Scholar 

  23. Lisman, T. et al. Elevated levels of von Willebrand Factor in cirrhosis support platelet adhesion despite reduced functional capacity. Hepatology 44, 53–61 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Feys, H. B. et al. ADAMTS13 activity to antigen ratio in physiological and pathological conditions associated with an increased risk of thrombosis. Br. J. Haematol. 138, 534–540 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Ferro, D. et al. High plasma levels of von Willebrand factor as a marker of endothelial perturbation in cirrhosis: relationship to endotoxemia. Hepatology 23, 1377–1383 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Argo, C. K. & Balogun, R. A. Blood products, volume control, and renal support in the coagulopathy of liver disease. Clin. Liver Dis. 13, 73–85 (2009).

    Article  PubMed  Google Scholar 

  27. Boccardo, P., Remuzzi, G. & Galbusera, M. Platelet dysfunction in renal failure. Semin. Thromb. Hemost. 30, 579–589 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Tripodi, A. et al. Thrombin generation in patients with cirrhosis: the role of platelets. Hepatology 44, 440–445 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Hedner, U. et al. Successful use of recombinant factor VIIa in patient with severe haemophilia A during synovectomy. Lancet 332, 1193 (1988).

    Article  Google Scholar 

  30. Bernstein, D. E. et al. Recombinant factor VIIa corrects prothrombin time in cirrhotic patients: a preliminary study. Gastroenterology 113, 1930–1937 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. Bosch, J. et al. Recombinant factor VIIa for upper gastrointestinal bleeding in patients with cirrhosis: a randomized, double-blind trial. Gastroenterology 127, 1123–1130 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Bosch, J. et al. Recombinant factor VIIa for variceal bleeding in patients with advanced cirrhosis: A randomized, controlled trial. Hepatology 47, 1604–1614 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Romero-Castro, R. et al. Recombinant-activated factor VII as hemostatic therapy in eight cases of severe hemorrhage from esophageal varices. Clin. Gastroenterol. Hepatol. 2, 78–84 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Sartori, M. T. et al. Effect of recombinant activated factor VII in critical bleeding: clinical experience of a single center. Clin. Appl. Thromb. Hemost. 15, 628–635 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Meadows, H. B. et al. The use of activated recombinant factor VII in a patient with fulminant hepatic failure requiring placement of an intracranial pressure monitor. Ann. Pharmacother. 45, e60 (2011).

    Article  PubMed  Google Scholar 

  36. Shami, V. M. et al. Recombinant activated factor VII for coagulopathy in fulminant hepatic failure compared with conventional therapy. Liver Transpl. 9, 138–143 (2003).

    Article  PubMed  Google Scholar 

  37. Stravitz, R. T. et al. Minimal effects of acute liver injury/acute liver failure on hemostasis as assessed by thromboelastography. J. Hepatol. 56, 129–136 (2012).

    Article  PubMed  Google Scholar 

  38. Caldwell, S. H., Chang, C. & Macik, B. G. Recombinant activated factor VII (rFVIIa) as a hemostatic agent in liver disease: a break from convention in need of controlled trials. Hepatology 39, 592–598 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Violi, F. & Ferro, D. Clotting activation and hyperfibrinolysis in cirrhosis: implication for bleeding and thrombosis. Semin. Thromb. Hemost. 39, 426–433 (2013).

    Article  CAS  PubMed  Google Scholar 

  40. Caldwell, S. H. et al. Coagulation disorders and hemostasis in liver disease: pathophysiology and critical assessment of current management. Hepatology 44, 1039–1046 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Colucci, M. et al. Deficiency of thrombin activatable fibrinolysis inhibitor in cirrhosis is associated with increased plasma fibrinolysis. Hepatology 38, 230–237 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Lisman, T. et al. Thrombin-activatable fibrinolysis inhibitor deficiency in cirrhosis is not associated with increased plasma fibrinolysis. Gastroenterology 121, 131–139 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Agarwal, S., Joyner, K. A. Jr, & Swaim, M. W. Ascites fluid as a possible origin for hyperfibrinolysis in advanced liver disease. Am. J. Gastroenterol. 95, 3218–3224 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Fergusson, D. A. et al. A comparison of aprotinin and lysine analogues in high-risk cardiac surgery. N. Engl. J. Med. 358, 2319–2331 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Gunawan, B. & Runyon, B. The efficacy and safety of epsilon-aminocaproic acid treatment in patients with cirrhosis and hyperfibrinolysis. Aliment. Pharmacol. Ther. 23, 115–120 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Howell, N. et al. Putting the record straight on aprotinin as safe and effective: results from a mixed treatment meta-analysis of trials of aprotinin. J. Thorac. Cardiovasc. Surg. 145, 234–240 (2013).

    Article  CAS  PubMed  Google Scholar 

  47. Mannucci, P. M. & Levi, M. Prevention and treatment of major blood loss. N. Engl. J. Med. 356, 2301–2311 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Franchini, M. & Lippi, G. Prothrombin complex concentrates: an update. Blood Transfus. 8, 149–154 (2010).

    PubMed  PubMed Central  Google Scholar 

  49. Holbrook, A. et al. Evidence-based management of anticoagulant therapy: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest 141 (Suppl. 2), e152S–e184S (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. FDA. Kcentra prescribing information [online].

  51. Cederbaum, A. I., Blatt, P. M. & Roberts, H. R. Intravascular coagulation with use of human prothrombin complex concentrates. Ann. Intern. Med. 84, 683–687 (1976).

    Article  CAS  PubMed  Google Scholar 

  52. Lorenz, R. et al. Efficacy and safety of a prothrombin complex concentrate with two virus-inactivation steps in patients with severe liver damage. Eur. J. Gastroenterol. Hepatol. 15, 15–20 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Mannucci, P. M., Franchi, F. & Dioguardi, N. Correction of abnormal coagulation in chronic liver disease by combined use of fresh-frozen plasma and prothrombin complex concentrates. Lancet 308, 542–545 (1976).

    Article  Google Scholar 

  54. Bick, R. L., Schmalhorst, W. R. & Shanbrom, E. Prothrombin complex concentrate: use in controlling the hemorrhagic diathesis of chronic liver disease. Am. J. Dig. Dis. 20, 741–749 (1975).

    Article  CAS  PubMed  Google Scholar 

  55. Green, G. et al. Use of factor-VII-rich prothrombin complex concentrate in liver disease. Lancet 305, 1311–1314 (1975).

    Article  Google Scholar 

  56. Arshad, F. et al. Prothrombin complex concentrate in the reduction of blood loss during orthotopic liver transplantation: PROTON-trial. BMC Surg. 13, 22 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Mannucci, P. M. et al. Deamino-8-D-arginine vasopressin shortens the bleeding time in uremia. N. Engl. J. Med. 308, 8–12 (1983).

    Article  CAS  PubMed  Google Scholar 

  58. Agnelli, G. et al. Desmopressin-induced improvement of abnormal coagulation in chronic liver disease. Lancet 321, 645 (1983).

    Article  Google Scholar 

  59. Agnelli, G. et al. Effects of desmopressin on hemostasis in patients with liver cirrhosis. Haemostasis 25, 241–247 (1995).

    CAS  PubMed  Google Scholar 

  60. de Franchis, R. et al. Randomized controlled trial of desmopressin plus terlipressin vs. terlipressin alone for the treatment of acute variceal hemorrhage in cirrhotic patients: a multicenter, double-blind study. Hepatology 18, 1102–1107 (1993).

    Article  CAS  PubMed  Google Scholar 

  61. Stanca, C. M. et al. Intranasal desmopressin versus blood transfusion in cirrhotic patients with coagulopathy undergoing dental extraction: a randomized controlled trial. J. Oral Maxillofac. Surg. 68, 138–143 (2010).

    Article  PubMed  Google Scholar 

  62. Wong, A. Y. et al. Desmopressin does not decrease blood loss and transfusion requirements in patients undergoing hepatectomy. Can. J. Anaesth. 50, 14–20 (2003).

    Article  PubMed  Google Scholar 

  63. Burroughs, A. K. et al. Desmopressin and bleeding time in patients with cirrhosis. Br. Med. J. (Clin. Res. Ed.) 291, 1377–1381 (1985).

    Article  CAS  Google Scholar 

  64. Thachil, J. Anemia—the overlooked factor in bleeding related to liver disease. J. Hepatol. 54, 593–594 (2011).

    Article  PubMed  Google Scholar 

  65. Turitto, V. T. & Baumgartner, H. R. Platelet interaction with subendothelium in a perfusion system: physical role of red blood cells. Microvasc. Res. 9, 335–344 (1975).

    Article  CAS  PubMed  Google Scholar 

  66. Turitto, V. T. & Weiss, H. J. Red blood cells: their dual role in thrombus formation. Science 207, 541–543 (1980).

    Article  CAS  PubMed  Google Scholar 

  67. Horne, M. K. 3rd et al. The effect of red blood cells on thrombin generation. Br. J. Haematol. 133, 403–408 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Violi, F. et al. Activation of platelet cyclooxygenase by red cells in vitro. N. Engl. J. Med. 313, 1091–1092 (1985).

    Article  CAS  PubMed  Google Scholar 

  69. Lisman, T. et al. No evidence for an intrinsic platelet defect in patients with liver cirrhosis—studies under flow conditions. J. Thromb. Haemost. 4, 2070–2072 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Escolar, G. et al. Evaluation of acquired platelet dysfunctions in uremic and cirrhotic patients using the platelet function analyzer (PFA-100): influence of hematocrit elevation. Haematologica 84, 614–619 (1999).

    CAS  PubMed  Google Scholar 

  71. Lisman, T., Caldwell, S. H. & Porte, R. J. Anemia as a potential contributor to bleeding in patients with liver disease—neglected but not forgotten Reply. J. Hepatol. 54, 594–595 (2011).

    Article  Google Scholar 

  72. Lisman, T. & Porte, R. J. Rebalanced hemostasis in patients with liver disease: evidence and clinical consequences. Blood 116, 878–885 (2010).

    Article  CAS  PubMed  Google Scholar 

  73. D'Amico, G. et al. Hepatic vein pressure gradient reduction and prevention of variceal bleeding in cirrhosis: a systematic review. Gastroenterology 131, 1611–1624 (2006).

    Article  PubMed  Google Scholar 

  74. de Franchis, R. & Baveno, V. F. Revising consensus in portal hypertension: report of the Baveno V consensus workshop on methodology of diagnosis and therapy in portal hypertension. J. Hepatol. 53, 762–768 (2010).

    Article  PubMed  Google Scholar 

  75. Kravetz, D. et al. Hemodynamic effects of blood volume restitution following a hemorrhage in rats with portal hypertension due to cirrhosis of the liver: influence of the extent of portal-systemic shunting. Hepatology 9, 808–814 (1989).

    Article  CAS  PubMed  Google Scholar 

  76. Castaneda, B. et al. Effects of blood volume restitution following a portal hypertensive-related bleeding in anesthetized cirrhotic rats. Hepatology 33, 821–825 (2001).

    Article  CAS  PubMed  Google Scholar 

  77. de Boer, M. T. et al. The impact of intraoperative transfusion of platelets and red blood cells on survival after liver transplantation. Anesth. Analg. 106, 32–44 (2008).

    Article  PubMed  Google Scholar 

  78. Massicotte, L. et al. Effects of phlebotomy and phenylephrine infusion on portal venous pressure and systemic hemodynamics during liver transplantation. Transplantation 89, 920–927 (2010).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors participated in study design, writing or revision of the manuscript and had final approval of the content of the manuscript.

Corresponding author

Correspondence to Neeral L. Shah.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, N., Intagliata, N., Northup, P. et al. Procoagulant therapeutics in liver disease: a critique and clinical rationale. Nat Rev Gastroenterol Hepatol 11, 675–682 (2014). https://doi.org/10.1038/nrgastro.2014.121

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2014.121

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing