Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Liver autophagy: much more than just taking out the trash

Key Points

  • Autophagy contributes to the maintenance of the energetic balance, participates in hepatocyte quality control and aids in the defence against exogenous pathogens and conditions that cause cellular toxicity in the liver

  • The different autophagic pathways that coexist in the liver are in dynamic intercommunication with one another, enabling a coordinated response to maintain homeostasis

  • Failure to properly execute the autophagic program leaves hepatocytes vulnerable to stressors and unable to accommodate the extreme energetic demands of this organ

  • Autophagy malfunction underlies the pathogenesis of common liver diseases, including metabolic disorders, protein conformational diseases, viral infection and carcinogenesis

  • Chemical modulation of autophagy has proven to be beneficial in certain liver pathologies, although manipulation of autophagy needs to be customized according to the status of the autophagic pathway in each disease state

Abstract

Studies performed in the liver in the 1960s led to the identification of lysosomes and the discovery of autophagy, the process by which intracellular proteins and organelles are degraded in lysosomes. Early studies in hepatocytes also uncovered how nutritional status regulates autophagy and how various circulating hormones modulate the activity of this catabolic process in the liver. The intensive characterization of hepatic autophagy over the years has revealed that lysosome-mediated degradation is important not only for maintaining liver homeostasis in normal physiological conditions, but also for an adequate response of this organ to stressors such as proteotoxicity, metabolic dysregulation, infection and carcinogenesis. Autophagic malfunction has also been implicated in the pathogenesis of common liver diseases, suggesting that chemical manipulation of this process might hold potential therapeutic value. In this Review—intended as an introduction to the topic of hepatic autophagy for clinical scientists—we describe the different types of hepatic autophagy, their role in maintaining homeostasis in a healthy liver and the contribution of autophagic malfunction to liver disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Autophagic pathways in the liver.
Figure 2: Molecular components of macroautophagy.
Figure 3: Functions of autophagy in liver physiology.
Figure 4: Liver autophagy and α1-antitrypsin deficiency.
Figure 5: Autophagy failure in the pathogenesis of NAFLD.
Figure 6: Hijacking of the autophagic system during liver viral infection.
Figure 7: The complex interplay between autophagy and hepatic carcinogenesis.

Similar content being viewed by others

References

  1. Mizushima, N., Levine, B., Cuervo, A. M. & Klionsky, D. J. Autophagy fights disease through cellular self-digestion. Nature 451, 1069–1075 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Yang, Z. & Klionsky, D. J. Mammalian autophagy: core molecular machinery and signaling regulation. Curr. Opin. Cell Biol. 22, 124–131 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Ciechanover, A. Intracellular protein degradation: from a vague idea thru the lysosome and the ubiquitin-proteasome system and onto human diseases and drug targeting. Biochim. Biophys. Acta 1824, 3–13 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. De Duve, C. & Wattiaux, R. Functions of lysosomes. Annu. Rev. Physiol. 28, 435–492 (1966).

    Article  CAS  PubMed  Google Scholar 

  5. Mizushima, N. & Klionsky, D. J. Protein turnover via autophagy: implications for metabolism. Annu. Rev. Nutr. 27, 19–40 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Singh, R. & Cuervo, A. M. Autophagy in the cellular energetic balance. Cell Metab. 13, 495–504 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Deter, R. L., Baudhuin, P. & De Duve, C. Participation of lysosomes in cellular autophagy induced in rat liver by glucagon. J. Cell Biol. 35, C11–C16 (1967).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mortimore, G. E. & Schworer, C. M. Induction of autophagy by amino-acid deprivation in perfused rat liver. Nature 270, 174–176 (1977).

    Article  CAS  PubMed  Google Scholar 

  9. Mortimore, G. & Mondon, C. E. Inhibition by insulin of valine turnover in liver. J. Biol. Chem. 245, 2375–2383 (1970).

    CAS  PubMed  Google Scholar 

  10. Klionsky, D. J. et al. A unified nomenclature for yeast autophagy-related genes. Dev. Cell 5, 539–545 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Mizushima, N., Sugita, H., Yoshimori, T. & Ohsumi, Y. A new protein conjugation system in human. The counterpart of the yeast Apg12p conjugation system essential for autophagy. J. Biol. Chem. 273, 33889–33892 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Mizushima, N., Yoshimori, T. & Ohsumi, Y. The role of Atg proteins in autophagosome formation. Annu. Rev. Cell. Dev. Biol. 27, 107–132 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Novak, I. & Dikic, I. Autophagy receptors in developmental clearance of mitochondria. Autophagy 7, 301–303 (2011).

    Article  CAS  PubMed  Google Scholar 

  14. Youle, R. J. & Narendra, D. P. Mechanisms of mitophagy. Nat. Rev. Mol. Cell Biol. 12, 9–14 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Berg, T. O., Fengsrud, M., Stromhaug, P. E., Berg, T. & Seglen, P. O. Isolation and characterization of rat liver amphisomes. Evidence for fusion of autophagosomes with both early and late endosomes. J. Biol. Chem. 273, 21883–21892 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Yang, Z. & Klionsky, D. J. Permeases recycle amino acids resulting from autophagy. Autophagy 3, 149–150 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Zoncu, R. et al. mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase. Science 334, 678–683 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Komatsu, M. et al. Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J. Cell Biol. 169, 425–434 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yamamoto, A., Cremona, M. & Rothman, J. Autophagy-mediated clearance of huntingtin aggregates triggered by the insulin-signaling pathway. J. Cell Biol. 172, 719–731 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kroemer, G., Marino, G. & Levine, B. Autophagy and the integrated stress response. Mol. Cell 40, 280–293 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mortimore, G. E., Lardeux, B. R. & Adams, C. E. Regulation of microautophagy and basal protein turnover in rat liver. Effects of short-term starvation. J. Biol. Chem. 263, 2506–2512 (1988).

    CAS  PubMed  Google Scholar 

  22. Sakai, Y., Koller, A., Rangell, L., Keller, G. & Subramani, S. Peroxisome degradation by microautophagy in Pichia pastoris. Identification of specific steps and morphological intermediates. J. Cell Biol. 141, 625–636 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sahu, R. et al. Microautophagy of cytosolic proteins by late endosomes. Dev. Cell 20, 131–139 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Raiborg, C. & Stenmark, H. The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins. Nature 458, 445–452 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Rusten, T. E. et al. ESCRTs and Fab1 regulate distinct steps of autophagy. Curr. Biol. 17, 1817–1825 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Dice, J. F. Peptide sequences that target cytosolic proteins for lysosomal proteolysis. Trends Biochem. Sci. 15, 305–309 (1990).

    Article  CAS  PubMed  Google Scholar 

  27. Bandyopadhyay, U., Kaushik, S., Varticovski, L. & Cuervo, A. M. The chaperone-mediated autophagy receptor organizes in dynamic protein complexes at the lysosomal membrane. Mol. Cell. Biol. 28, 5747–5763 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Cuervo, A. M. & Dice, J. F. A receptor for the selective uptake and degradation of proteins by lysosomes. Science 273, 501–503 (1996).

    Article  CAS  PubMed  Google Scholar 

  29. Kaushik, S. & Cuervo, A. M. Chaperones in autophagy. Pharmacol. Res. 66, 484–493 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kaushik, S. & Cuervo, A. M. Chaperone-mediated autophagy: a unique way to enter the lysosome world. Trends Cell. Biol. 22, 407–417 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Arias, E. & Cuervo, A. M. Chaperone-mediated autophagy in protein quality control. Curr. Opin. Cell Biol. 23, 184–189 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Kiffin, R., Christian, C. J., Knecht, E. & Cuervo, A. M. Activation of chaperone-mediated autophagy during oxidative stress. Mol. Biol. Cell 15, 4829–4840 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Massey, A. C., Kaushik, S., Sovak, G., Kiffin, R. & Cuervo, A. M. Consequences of the selective blockage of chaperone-mediated autophagy. Proc. Natl Acad. Sci. USA 103, 5905–5910 (2006).

    Article  CAS  Google Scholar 

  34. Matsui, Y. et al. Distinct roles of autophagy in the heart during ischemia and reperfusion: roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy. Circ. Res. 100, 914–922 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Eng, C. H., Yu, K., Lucas, J., White, E. & Abraham, R. T. Ammonia derived from glutaminolysis is a diffusible regulator of autophagy. Sci. Signal. 3, ra31 (2010).

    PubMed  Google Scholar 

  36. Lum, J. et al. Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell 120, 237–248 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Ezaki, J. et al. Liver autophagy contributes to the maintenance of blood glucose and amino acid levels. Autophagy 7, 727–736 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kuma, A. et al. The role of autophagy during the early neonatal starvation period. Nature 432, 1032–1036 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Cuervo, A. M., Knecht, E., Terlecky, S. R. & Dice, J. F. Activation of a selective pathway of lysosomal proteolysis in rat liver by prolonged starvation. Am. J. Physiol. 269, C1200–C1208 (1995).

    Article  CAS  PubMed  Google Scholar 

  40. Anguiano, J. et al. Chemical modulation of chaperone-mediated autophagy by retinoic acid derivatives. Nat. Chem. Biol. 9, 374–382 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Finn, P. F. & Dice, J. F. Ketone bodies stimulate chaperone-mediated autophagy. J. Biol. Chem. 280, 25864–25870 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Cuervo, A. M. & Dice, J. F. Regulation of lamp2a levels in the lysosomal membrane. Traffic 1, 570–583 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Singh, R. et al. Autophagy regulates lipid metabolism. Nature 458, 1131–1135 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ding, W. X. et al. Autophagy reduces acute ethanol-induced hepatotoxicity and steatosis in mice. Gastroenterology 139, 1740–1752 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. Mei, S. et al. Differential roles of unsaturated and saturated fatty acids on autophagy and apoptosis in hepatocytes. J. Pharmacol. Exp. Ther. 339, 487–498 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. O'Rourke, E. J. & Ruvkun, G. MXL-3 and HLH-30 transcriptionally link lipolysis and autophagy to nutrient availability. Nat. Cell Biol. 15, 668–676 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lapierre, L. R., Gelino, S., Melendez, A. & Hansen, M. Autophagy and lipid metabolism coordinately modulate life span in germline-less, C. elegans. Curr. Biol. 21, 1507–1514 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Settembre, C. et al. TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop. Nat. Cell Biol. 15, 647–658 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Thoen, L. F. et al. A role for autophagy during hepatic stellate cell activation. J. Hepatol. 55, 1353–1360 (2011).

    Article  CAS  PubMed  Google Scholar 

  50. Hernandez-Gea, V. et al. Autophagy releases lipid that promotes fibrogenesis by activated hepatic stellate cells in mice and in human tissues. Gastroenterology 142, 938–946 (2012).

    Article  PubMed  Google Scholar 

  51. Kotoulas, O. B., Kalamidas, S. A. & Kondomerkos, D. J. Glycogen autophagy in glucose homeostasis. Pathol. Res. Pract. 202, 631–638 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Jiang, S. et al. Starch binding domain-containing protein 1/genethonin 1 is a novel participant in glycogen metabolism. J. Biol. Chem. 285, 34960–34971 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Jiang, S., Wells, C. D. & Roach, P. J. Starch-binding domain-containing protein 1 (Stbd1) and glycogen metabolism: identification of the Atg8 family interacting motif (AIM) in Stbd1 required for interaction with GABARAPL1. Biochem. Biophys. Res. Commun. 413, 420–425 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Takikita, S. et al. The values and limits of an in vitro model of Pompe disease: the best laid schemes o' mice an' men. Autophagy 5, 729–731 (2009).

    Article  CAS  PubMed  Google Scholar 

  55. Lv, L. et al. Acetylation targets the M2 isoform of pyruvate kinase for degradation through chaperone-mediated autophagy and promotes tumor growth. Mol. Cell 42, 719–730 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Mathew, R. et al. Autophagy suppresses tumorigenesis through elimination of p62. Cell 137, 1062–1075 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Komatsu, M. et al. Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell 131, 1149–1163 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Twig, G. et al. Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J. 27, 433–446 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kim, I., Rodriguez-Enriquez, S. & Lemasters, J. J. Selective degradation of mitochondria by mitophagy. Arch. Biochem. Biophys. 462, 245–253 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Narendra, D., Tanaka, A., Suen, D. F. & Youle, R. J. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J. Cell Biol. 183, 795–803 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Twig, G. & Shirihai, O. S. The interplay between mitochondrial dynamics and mitophagy. Antioxid. Redox Signal. 14, 1939–1951 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Schweers, R. L. et al. NIX is required for programmed mitochondrial clearance during reticulocyte maturation. Proc. Natl Acad. Sci. USA 104, 19500–19505 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Glick, D. et al. BNip3 regulates mitochondrial function and lipid metabolism in the liver. Mol. Cell. Biol. 32, 2570–2584 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ding, W. X. et al. Parkin and mitofusins reciprocally regulate mitophagy and mitochondrial spheroid formation. J. Biol. Chem. 287, 42379–42388 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Egan, D. F. et al. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 331, 456–461 (2011).

    Article  CAS  PubMed  Google Scholar 

  66. Zhang, C. & Cuervo, A. M. Restoration of chaperone-mediated autophagy in aging liver improves cellular maintenance and hepatic function. Nat. Med. 14, 959–965 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Matsumoto, N. et al. Comprehensive proteomics analysis of autophagy-deficient mouse liver. Biochem. Biophys. Res. Commun. 368, 643–649 (2008).

    Article  CAS  PubMed  Google Scholar 

  68. Jain, A. et al. p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription. J. Biol. Chem. 285, 22576–22591 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lau, A. et al. A noncanonical mechanism of Nrf2 activation by autophagy deficiency: direct interaction between Keap1 and p62. Mol. Cell. Biol. 30, 3275–3285 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Komatsu, M. et al. The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat. Cell Biol. 12, 213–223 (2010).

    Article  CAS  PubMed  Google Scholar 

  71. Taguchi, K. et al. Keap1 degradation by autophagy for the maintenance of redox homeostasis. Proc. Natl Acad. Sci. USA 109, 13561–13566 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Scherz-Shouval, R. et al. Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J. 26, 1749–1760 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ogata, M. et al. Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol. Cell. Biol. 26, 9220–9231 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Yorimitsu, T., Nair, U., Yang, Z. & Klionsky, D. J. Endoplasmic reticulum stress triggers autophagy. J. Biol. Chem. 281, 30299–30304 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Fuest, M. et al. The transcription factor c-Jun protects against sustained hepatic endoplasmic reticulum stress thereby promoting hepatocyte survival. Hepatology 55, 408–418 (2012).

    Article  CAS  PubMed  Google Scholar 

  76. Kouroku, Y. et al. ER stress (PERK/eIF2α phosphorylation) mediates the polyglutamine-induced LC3 conversion, an essential step for autophagy formation. Cell Death Differ. 14, 230–239 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Bernales, S., Schuck, S. & Walter, P. ER-phagy: selective autophagy of the endoplasmic reticulum. Autophagy 3, 285–287 (2007).

    Article  PubMed  Google Scholar 

  78. Yang, L., Li, P., Fu, S., Calay, E. S. & Hotamisligil, G. S. Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance. Cell Metab. 11, 467–478 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Axe, E. L. et al. Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J. Cell Biol. 182, 685–701 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Lomas, D. A., Evans, D. L., Finch, J. T. & Carrell, R. W. The mechanism of Z α1-antitrypsin accumulation in the liver. Nature 357, 605–607 (1992).

    Article  CAS  PubMed  Google Scholar 

  81. Perlmutter, D. H. & Silverman, G. A. Hepatic fibrosis and carcinogenesis in alpha1-antitrypsin deficiency: a prototype for chronic tissue damage in gain-of-function disorders. Cold Spring Harb. Perspect. Biol. 3 (2011).

  82. Kamimoto, T. et al. Intracellular inclusions containing mutant α1-antitrypsin Z are propagated in the absence of autophagic activity. J. Biol. Chem. 281, 4467–4476 (2006).

    Article  CAS  PubMed  Google Scholar 

  83. Qu, D., Teckman, J. H., Omura, S. & Perlmutter, D. H. Degradation of a mutant secretory protein, alpha1-antitrypsin Z, in the endoplasmic reticulum requires proteasome activity. J. Biol. Chem. 271, 22791–22795 (1996).

    Article  CAS  PubMed  Google Scholar 

  84. Teckman, J. H., An, J. K., Loethen, S. & Perlmutter, D. H. Fasting in alpha1-antitrypsin deficient liver: consultative activation of autophagy. Am. J. Physiol. 283, G1156–G1165 (2002).

    CAS  Google Scholar 

  85. Hidvegi, T. et al. An autophagy-enhancing drug promotes degradation of mutant alpha1-antitrypsin Z and reduces hepatic fibrosis. Science 329, 229–232 (2010).

    Article  CAS  PubMed  Google Scholar 

  86. US National Library of Medicine. ClinicalTrials.gov[online], (2013).

  87. Pastore, N. et al. Gene transfer of master autophagy regulator TFEB results in clearance of toxic protein and correction of hepatic disease in α-1-anti-trypsin deficiency. EMBO Mol. Med. 5, 397–412 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Harada, M. Autophagy is involved in the elimination of intracellular inclusions, Mallory-Denk bodies, in hepatocytes. Med. Mol. Morphol. 43, 13–18 (2010).

    Article  PubMed  Google Scholar 

  89. Domart, M. C. et al. Concurrent induction of necrosis, apoptosis, and autophagy in ischemic preconditioned human livers formerly treated by chemotherapy. J. Hepatol. 51, 881–889 (2009).

    Article  CAS  PubMed  Google Scholar 

  90. Lu, Z. et al. Participation of autophagy in the degeneration process of rat hepatocytes after transplantation following prolonged cold preservation. Arch. Histol. Cytol. 68, 71–80 (2005).

    Article  PubMed  Google Scholar 

  91. Kim, J. S. et al. Impaired autophagy: a mechanism of mitochondrial dysfunction in anoxic rat hepatocytes. Hepatology 47, 1725–1736 (2008).

    Article  CAS  PubMed  Google Scholar 

  92. Gotoh, K. et al. Participation of autophagy in the initiation of graft dysfunction after rat liver transplantation. Autophagy 5, 351–360 (2009).

    Article  CAS  PubMed  Google Scholar 

  93. Fang, H., Liu, A., Dahmen, U. & Dirsch, O. Dual role of chloroquine in liver ischemia reperfusion injury: reduction of liver damage in early phase, but aggravation in late phase. Cell Death Dis. 4, e694 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Padrissa-Altes, S., Zaouali, M. A., Bartrons, R. & Rosello-Catafau, J. Ubiquitin-proteasome system inhibitors and AMPK regulation in hepatic cold ischaemia and reperfusion injury: possible mechanisms. Clin. Sci. (Lond.) 123, 93–98 (2012).

    Article  CAS  Google Scholar 

  95. Zaouali, M. A. et al. AMPK involvement in endoplasmic reticulum stress and autophagy modulation after fatty liver graft preservation: a role for melatonin and trimetazidine cocktail. J. Pineal. Res. 55, 65–78 (2013).

    Article  CAS  PubMed  Google Scholar 

  96. Evankovich, J. et al. Calcium/calmodulin-dependent protein kinase IV limits organ damage in hepatic ischemia-reperfusion injury through induction of autophagy. Am. J. Physiol. Gastrointest. Liver Physiol. 303, G189–G198 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Liu, A., Fang, H., Dahmen, U. & Dirsch, O. Chronic lithium treatment protects against liver ischemia/reperfusion injury in rats. Liver Transpl. 19, 762–772 (2013).

    Article  PubMed  Google Scholar 

  98. Degli Esposti, D. et al. Ischemic preconditioning induces autophagy and limits necrosis in human recipients of fatty liver grafts, decreasing the incidence of rejection episodes. Cell Death Dis. 2, e111 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Wang, J. H. et al. Autophagy suppresses age-dependent ischemia and reperfusion injury in livers of mice. Gastroenterology 141, 2188–2199.e6 (2011).

    Article  CAS  PubMed  Google Scholar 

  100. Wang, D. et al. The role of AKT1 and autophagy in the protective effect of hydrogen sulphide against hepatic ischemia/reperfusion injury in mice. Autophagy 8, 954–962 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Sun, K. et al. Autophagy lessens ischemic liver injury by reducing oxidative damage. Cell Biosci. 3, 26 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Kovacs, A. L. & Seglen, P. O. Inhibition of hepatocytic protein degradation by inducers of autophagosome accumulation. Acta Biol. Med. Ger. 41, 125–130 (1982).

    CAS  PubMed  Google Scholar 

  103. Ding, W. X., Li, M. & Yin, X. M. Selective taste of ethanol-induced autophagy for mitochondria and lipid droplets. Autophagy 7, 248–249 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Noh, B. K. et al. Restoration of autophagy by puerarin in ethanol-treated hepatocytes via the activation of AMP-activated protein kinase. Biochem. Biophys. Res. Commun. 414, 361–366 (2011).

    Article  CAS  PubMed  Google Scholar 

  105. Yang, L., Wu, D., Wang, X. & Cederbaum, A. I. Cytochrome P4502E1, oxidative stress, JNK, and autophagy in acute alcohol-induced fatty liver. Free Radic. Biol. Med. 53, 1170–1180 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Thomes, P. G. et al. Proteasome activity and autophagosome content in liver are reciprocally regulated by ethanol treatment. Biochem. Biophys. Res. Commun. 417, 262–267 (2012).

    Article  CAS  PubMed  Google Scholar 

  107. Thomes, P. G. et al. Multilevel regulation of autophagosome content by ethanol oxidation in HepG2 cells. Autophagy 9, 63–73 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Sid, B., Verrax, J. & Calderon, P. B. Role of AMPK activation in oxidative cell damage: Implications for alcohol-induced liver disease. Biochem. Pharmacol. 86, 200–209 (2013).

    Article  CAS  PubMed  Google Scholar 

  109. Wu, D., Wang, X., Zhou, R. & Cederbaum, A. CYP2E1 enhances ethanol-induced lipid accumulation but impairs autophagy in HepG2 E47 cells. Biochem. Biophys. Res. Commun. 402, 116–122 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Ni, H. M., Bockus, A., Boggess, N., Jaeschke, H. & Ding, W. X. Activation of autophagy protects against acetaminophen-induced hepatotoxicity. Hepatology 55, 222–232 (2012).

    Article  CAS  PubMed  Google Scholar 

  111. Koliaki, C. & Roden, M. Hepatic energy metabolism in human diabetes mellitus, obesity and non-alcoholic fatty liver disease. Mol. Cell. Endocrinol. 379, 35–42 (2013).

    Article  CAS  PubMed  Google Scholar 

  112. Cui, M., Yu, H., Wang, J., Gao, J. & Li, J. Chronic caloric restriction and exercise improve metabolic conditions of dietary-induced obese mice in autophagy correlated manner without involving AMPK. J. Diabetes Res. 2013, 852754 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Koga, H., Kaushik, S. & Cuervo, A. M. Altered lipid content inhibits autophagic vesicular fusion. FASEB J. 24, 3052–3065 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Liu, H. Y. et al. Hepatic autophagy is suppressed in the presence of insulin resistance and hyperinsulinemia: inhibition of FoxO1-dependent expression of key autophagy genes by insulin. J. Biol. Chem. 284, 31484–31492 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Cuervo, A. M. & Dice, J. F. Age-related decline in chaperone-mediated autophagy. J. Biol. Chem. 275, 31505–31513 (2000).

    Article  CAS  PubMed  Google Scholar 

  116. Rodriguez-Navarro, J. A. et al. Inhibitory effect of dietary lipids on chaperone-mediated autophagy. Proc. Natl Acad. Sci. USA 109, E705–E714 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Lin, C. W. et al. Pharmacological promotion of autophagy alleviates steatosis and injury in alcoholic and non-alcoholic fatty liver conditions in mice. J. Hepatol. 58, 993–999 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Levine, B., Mizushima, N. & Virgin, H. W. Autophagy in immunity and inflammation. Nature 469, 323–335 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Deretic, V. Autophagy in immunity and cell-autonomous defense against intracellular microbes. Immunol. Rev. 240, 92–104 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Sir, D. & Ou, J. H. Autophagy in viral replication and pathogenesis. Mol. Cells 29, 1–7 (2010).

    Article  CAS  PubMed  Google Scholar 

  121. Orvedahl, A. et al. HSV-1 ICP34.5 confers neurovirulence by targeting the Beclin 1 autophagy protein. Cell Host Microbe 1, 23–35 (2007).

    Article  CAS  PubMed  Google Scholar 

  122. Kyei, G. B. et al. Autophagy pathway intersects with HIV-1 biosynthesis and regulates viral yields in macrophages. J. Cell. Biol. 186, 255–268 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Kudchodkar, S. B. & Levine, B. Viruses and autophagy. Rev. Med. Virol. 19, 359–378 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Rautou, P. E. et al. Autophagy in liver diseases. J. Hepatol. 53, 1123–1134 (2010).

    Article  CAS  PubMed  Google Scholar 

  125. Sir, D. et al. The early autophagic pathway is activated by hepatitis B virus and required for viral DNA replication. Proc. Natl Acad. Sci. USA 107, 4383–4388 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Li, J. et al. Subversion of cellular autophagy machinery by hepatitis B virus for viral envelopment. J. Virol. 85, 6319–6333 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Tian, Y., Sir, D., Kuo, C. F., Ann, D. K. & Ou, J. H. Autophagy required for hepatitis B virus replication in transgenic mice. J. Virol. 85, 13453–13456 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Tang, H. et al. Hepatitis B virus X protein sensitizes cells to starvation-induced autophagy via up-regulation of beclin 1 expression. Hepatology 49, 60–71 (2009).

    Article  CAS  PubMed  Google Scholar 

  129. Rosen, H. R. Clinical practice. Chronic hepatitis C infection. N. Engl. J. Med. 364, 2429–2438 (2011).

    Article  CAS  PubMed  Google Scholar 

  130. Ait-Goughoulte, M. et al. Hepatitis C virus genotype 1a growth and induction of autophagy. J. Virol. 82, 2241–2249 (2008).

    Article  CAS  PubMed  Google Scholar 

  131. Dreux, M., Gastaminza, P., Wieland, S. F. & Chisari, F. V. The autophagy machinery is required to initiate hepatitis C virus replication. Proc. Natl Acad. Sci. USA 106, 14046–14051 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Sir, D. et al. Induction of incomplete autophagic response by hepatitis C virus via the unfolded protein response. Hepatology 48, 1054–1061 (2008).

    Article  CAS  PubMed  Google Scholar 

  133. Su, W. C. et al. Rab5 and class III phosphoinositide 3-kinase Vps34 are involved in hepatitis C virus NS4B-induced autophagy. J. Virol. 85, 10561–10571 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Shrivastava, S., Bhanja Chowdhury, J., Steele, R., Ray, R. & Ray, R. B. Hepatitis C virus upregulates Beclin1 for induction of autophagy and activates mTOR signaling. J. Virol. 86, 8705–8712 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Kim, S. J., Syed, G. H. & Siddiqui, A. Hepatitis C virus induces the mitochondrial translocation of Parkin and subsequent mitophagy. PLoS Pathog. 9, e1003285 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Ke, P. Y. & Chen, S. S. Activation of the unfolded protein response and autophagy after hepatitis C virus infection suppresses innate antiviral immunity in vitro. J. Clin. Invest. 121, 37–56 (2011).

    Article  CAS  PubMed  Google Scholar 

  137. Taguwa, S. et al. Dysfunction of autophagy participates in vacuole formation and cell death in cells replicating hepatitis C virus. J. Virol. 85, 13185–13194 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Gosert, R. et al. Identification of the hepatitis C virus RNA replication complex in Huh-7 cells harboring subgenomic replicons. J. Virol. 77, 5487–5492 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Guevin, C. et al. Autophagy protein ATG5 interacts transiently with the hepatitis C virus RNA polymerase (NS5B) early during infection. Virology 405, 1–7 (2010).

    Article  CAS  PubMed  Google Scholar 

  140. McLauchlan, J. Lipid droplets and hepatitis C virus infection. Biochim. Biophys. Acta 1791, 552–559 (2009).

    Article  CAS  PubMed  Google Scholar 

  141. Shrivastava, S., Raychoudhuri, A., Steele, R., Ray, R. & Ray, R. B. Knockdown of autophagy enhances the innate immune response in hepatitis C virus-infected hepatocytes. Hepatology 53, 406–414 (2011).

    Article  CAS  PubMed  Google Scholar 

  142. Kisen, G. O. et al. Reduced autophagic activity in primary rat hepatocellular carcinoma and ascites hepatoma cells. Carcinogenesis 14, 2501–2505 (1993).

    Article  CAS  PubMed  Google Scholar 

  143. Mathew, R. et al. Autophagy suppresses tumor progression by limiting chromosomal instability. Genes Dev. 21, 1367–1381 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Liang, X. et al. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 402, 672–676 (1999).

    Article  CAS  PubMed  Google Scholar 

  145. Chen, H. Y. & White, E. Role of autophagy in cancer prevention. Cancer Prev. Res. (Phila.) 4, 973–983 (2011).

    Article  CAS  Google Scholar 

  146. Levine, B. & Kroemer, G. Autophagy in the pathogenesis of disease. Cell 132, 27–42 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. White, E. Deconvoluting the context-dependent role for autophagy in cancer. Nat. Rev. Cancer 12, 401–410 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Morselli, E. et al. Anti- and pro-tumor functions of autophagy. Biochim. Biophys. Acta 1793, 1524–1532 (2009).

    Article  CAS  PubMed  Google Scholar 

  149. Pfeifer, U. Inhibited autophagic degradation of cytoplasm during compensatory growth of liver cells after partial hepatectomy. Virchows Arch. B Cell Pathol. Incl. Mol. Pathol. 30, 313–333 (1979).

    CAS  PubMed  Google Scholar 

  150. Song, J. et al. Autophagy in hypoxia protects cancer cells against apoptosis induced by nutrient deprivation through a Beclin1-dependent way in hepatocellular carcinoma. J. Cell. Biochem. 112, 3406–3420 (2011).

    Article  CAS  PubMed  Google Scholar 

  151. Takamura, A. et al. Autophagy-deficient mice develop multiple liver tumors. Genes Dev. 25, 795–800 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Ding, Z. B. et al. Association of autophagy defect with a malignant phenotype and poor prognosis of hepatocellular carcinoma. Cancer Res. 68, 9167–9175 (2008).

    Article  PubMed  Google Scholar 

  153. Qu, X. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J. Clin. Invest. 112, 1809–1820 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Toshima, T. et al. Autophagy enhances hepatocellular carcinoma progression by activation of mitochondrial beta-oxidation. J. Gastroenterol. http://dx.doi.org/10.1007/s00535-013-0835-0.

  155. Li, J. et al. Autophagy promotes hepatocellular carcinoma cell invasion through activation of epithelial-mesenchymal transition. Carcinogenesis 34, 1343–1351 (2013).

    Article  CAS  PubMed  Google Scholar 

  156. Wang, R. C. & Levine, B. Autophagy in cellular growth control. FEBS Lett. 584, 1417–1426 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Inami, Y. et al. Persistent activation of Nrf2 through p62 in hepatocellular carcinoma cells. J. Cell. Biol. 193, 275–284 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Shi, Y. H. et al. Targeting autophagy enhances sorafenib lethality for hepatocellular carcinoma via ER stress-related apoptosis. Autophagy 7, 1159–1172 (2011).

    Article  CAS  PubMed  Google Scholar 

  159. Gauthier, A. & Ho, M. Role of sorafenib in the treatment of advanced hepatocellular carcinoma: An update. Hepatol. Res. 43, 147–154 (2013).

    Article  CAS  PubMed  Google Scholar 

  160. Guo, X. L. et al. Inhibition of autophagy enhances anticancer effects of bevacizumab in hepatocarcinoma. J. Mol. Med. (Berl.) 91, 473–483 (2013).

    Article  CAS  Google Scholar 

  161. Liu, Y. L. et al. Autophagy potentiates the anti-cancer effects of the histone deacetylase inhibitors in hepatocellular carcinoma. Autophagy 6, 1057–1065 (2010).

    Article  CAS  PubMed  Google Scholar 

  162. Decaens, T. et al. Phase II study of sirolimus in treatment-naive patients with advanced hepatocellular carcinoma. Dig. Liver Dis. 44, 610–616 (2012).

    Article  CAS  PubMed  Google Scholar 

  163. Xu, Y. et al. miR-101 inhibits autophagy and enhances cisplatin-induced apoptosis in hepatocellular carcinoma cells. Oncol. Rep. 29, 2019–2024 (2013).

    Article  CAS  PubMed  Google Scholar 

  164. Kon, M. et al. Chaperone-mediated autophagy is required for tumor growth. Sci. Transl. Med. 3, ra117 (2011).

    Article  CAS  Google Scholar 

  165. Saha, T. LAMP2A overexpression in breast tumors promotes cancer cell survival via chaperone-mediated autophagy. Autophagy 8 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Work in the laboratory of A. M. Cuervo is supported by grants from the NIH AG21904, AG031782, DK098408, a Hirschl/Weill-Caulier Career Scientist Award and the generous support of R. and R. Belfer. J. L. Schneider is supported by NIH/NIA T32-NS007098, T32-GM007288 and F30-AG046109.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to all aspects of this manuscript.

Corresponding author

Correspondence to Ana Maria Cuervo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schneider, J., Cuervo, A. Liver autophagy: much more than just taking out the trash. Nat Rev Gastroenterol Hepatol 11, 187–200 (2014). https://doi.org/10.1038/nrgastro.2013.211

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2013.211

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing