Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Protozomics: trypanosomatid parasite genetics comes of age

Key Points

  • Trypanosomatid protozoans are responsible for some of the most devastating and, as yet, poorly controlled diseases of tropical and semi-tropical countries.

  • In the past ten years, a comprehensive molecular genetic 'toolkit' has become available for their study, including efficient methods of transient and stable DNA transfection, expression vectors, homologous gene replacements and transposon mutagenesis.

  • Classical genetics is difficult in African trypanosomes due to the requirement for a tsetse fly colony, and it is impossible in Leishmania, as proved by unsuccessful laboratory crosses.

  • In trypanosomes, RNA interference (RNAi) technology has proved an especially powerful tool as it can be readily applied to inactivate transcripts from any gene. By contrast, RNAi methods have so far been unsuccessful in Leishmania, possibly because it has lost this pathway and therefore normally tolerates significant levels of endogenous double-stranded RNAs.

  • Forward genetics in Leishmania has been established using powerful selections for mutants and functional rescue after cosmid library transfection.

  • RNAi 'knockdown' libraries have recently enabled forward genetics approaches in trypanosomes.

  • Differences in the efficacy of genetic methods in Leishmania and trypanosomes have steered investigators to focus on different aspects of parasite biology in these organisms.

Abstract

Trypanosomatid protozoans cause important diseases of humans and their domestic livestock. Various molecular genetic tools are now allowing rapid progress in understanding many of the unique aspects of the molecular and cell biology of these organisms. Diploidy and the lack or difficulty of sexual crossing has been a challenge for forward genetics, but powerful selections and functional complementation have helped to overcome it in Leishmania. RNA interference has been adapted for forward genetics in trypanosomes, in which it is also a powerful tool for reverse genetics. Interestingly, the efficacy of different genetic tools has steered research into different aspects of the biology of these parasites.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparison of forward genetics in Leishmania and Trypanosoma brucei.

Similar content being viewed by others

References

  1. Borst, P. & Rudenko, G. Antigenic variation in African trypanosomes. Science 264, 1872–1873 (1994).

    Article  CAS  Google Scholar 

  2. Clayton, C. E. Genetic manipulation of Kinetoplastida. Parasitol. Today 15, 372–378 (1999). This is a comprehensive review of the methods and approaches used to genetically modify the trypanosomatid protozoan genome.

    Article  CAS  Google Scholar 

  3. Swindle, J. & Tait, A. in Molecular Biology of Parasitic Protozoa (eds Smith, D. F. & Parsons, M.) 6–34 (IRL, Oxford, UK, 1996).

    Google Scholar 

  4. Myler, P. J. et al. Genomic organization and gene function in Leishmania. Biochem. Soc. Trans. 28, 527–531 (2000).

    Article  CAS  Google Scholar 

  5. Sogin, M. L., Hinkle, G. & Leipe, D. D. Universal tree of life. Nature 362, 795 (1993).

    Article  CAS  Google Scholar 

  6. Hannaert, V. et al. Plant-like traits associated with metabolism of trypanosomatid parasites. Proc. Natl Acad. Sci. USA (in the press).

  7. Vickerman, K. in Biology of the Kinetoplastida (eds Lumsden, W. H. R. & Evans, D. A.) 1–76 (Academic, London, 1976).

    Google Scholar 

  8. Fernandes, A. P., Nelson, K. & Beverley, S. M. Evolution of nuclear ribosomal RNAs in kinetoplastid protozoa: perspectives on the age and origins of parasitism. Proc. Natl Acad. Sci. USA 90, 11608–11612 (1993).

    Article  CAS  Google Scholar 

  9. Tschudi, C. & Pearce, E. J. (eds) Biology of Parasitism (Kluwer Academic, Boston, Massachusetts, 2000). A recent compendium of essays that describe many areas of molecular parasitology, with several that focus on the biology of the trypanosomatid protozoans.

    Book  Google Scholar 

  10. Tait, A. et al. Genetic analysis of phenotype in Trypanosoma brucei: a classical approach to potentially complex traits. Phil. Trans. R. Soc. Lond. B Biol. Sci. 357, 89–99 (2002). The authors describe the methods that are used to carry out and analyse genetic crosses in trypanosomes, and report their application to phenotypes such as drug resistance.

    Article  CAS  Google Scholar 

  11. Beverley, S. M. in Molecular and Medical Parasitology (eds Marr, J. M., Nilsen, T. & Komuniecki, R.) (Academic, New York, in the press). A detailed summary of the methods that are used for the genetic modification of Leishmania , described in table 2 in this review, and of several of the gene systems to which they have been applied.

  12. Tibayrenc, M. & Ayala, F. J. Evolutionary genetics of Trypanosoma and Leishmania. Microbes Infect. 1, 465–472 (1999).

    Article  CAS  Google Scholar 

  13. Shi, H. et al. Genetic interference in Trypanosoma brucei by heritable and inducible double-stranded RNA. RNA 6, 1069–1076 (2000).

    Article  CAS  Google Scholar 

  14. Clayton, C. E. Life without transcriptional control? From fly to man and back again. EMBO J. 21, 1881–1888 (2002). A summary of many of the unusual aspects of transcription and gene expression in the trypanosomatid protozoa, including the apparent lack of RNA polymerase II promoters.

    Article  CAS  Google Scholar 

  15. Tyler-Cross, R. E., Short, S. L., Floeter-Winter, L. M. & Buck, G. A. Transient expression mediated by the Trypanosoma cruzi rRNA promoter. Mol. Biochem. Parasitol. 72, 23–31 (1995).

    Article  CAS  Google Scholar 

  16. Gay, L. S., Wilson, M. E. & Donelson, J. E. The promoter for the ribosomal RNA genes of Leishmania chagasi. Mol. Biochem. Parasitol. 77, 193–200 (1996).

    Article  CAS  Google Scholar 

  17. Patnaik, P. K., Axelrod, N., Van der Ploeg, L. H. T. & Cross, G. A. M. Artificial linear mini-chromosomes for Trypanosoma brucei. Nucleic Acids Res. 24, 668–675 (1996).

    Article  CAS  Google Scholar 

  18. Tamar, S. & Papadopoulou, B. A telomere-mediated chromosome fragmentation approach to assess mitotic stability and ploidy alterations of Leishmania chromosomes. J. Biol. Chem. 276, 11662–11673 (2001).

    Article  CAS  Google Scholar 

  19. Clayton, C. E. Control of gene expression in trypanosomes. Prog. Nucleic Acids Res. Mol. Biol. 43, 37–66 (1992). The author discusses the unique mechanisms that are used by trypanosomes to control gene expression, such as transcription by RNA polymerase I, elongation, RNA stability and translational control.

    Article  CAS  Google Scholar 

  20. Agabian, N. Trans splicing of nuclear pre-mRNAs. Cell 61, 1157–1160 (1990).

    Article  CAS  Google Scholar 

  21. Ullu, E., Tschudi, C. & Gunzl, A. in Molecular Biology of Parasitic Protozoa (eds Smith, D. F. & Parsons, M.) 115–133 (IRL, Oxford, UK, 1996).

    Google Scholar 

  22. Zomerdijk, J. C. B. M., Kieft, R. & Borst, P. Efficient production of functional mRNA mediated by RNA polymerase I in Trypanosoma brucei. Nature 353, 772–775 (1991).

    Article  CAS  Google Scholar 

  23. Papadopoulou, B., Roy, G. & Ouellette, M. Autonomous replication of bacterial DNA plasmid oligomers in Leishmania. Mol. Biochem. Parasitol. 65, 39–49 (1994).

    Article  CAS  Google Scholar 

  24. LeBowitz, J. H., Smith, H. Q., Rusche, L. & Beverley, S. M. Coupling of poly(A) site selection and trans-splicing in Leishmania. Genes Dev. 7, 996–1007 (1993).

    Article  CAS  Google Scholar 

  25. Cruz, A. K. in Gene Targeting (ed. Vega, M. A.) 65–81 (CRC, Boca Raton, Florida, 1995).

    Google Scholar 

  26. Cruz, A. K., Titus, R. & Beverley, S. M. Plasticity in chromosome number and testing of essential genes in Leishmania by targeting. Proc. Natl Acad. Sci. USA 90, 1599–1603 (1993).

    Article  CAS  Google Scholar 

  27. Biebinger, S., Wirtz, L. E., Lorenz, P. & Clayton, C. Vectors for inducible expression of toxic gene products in bloodstream and procyclic Trypanosoma brucei. Mol. Biochem. Parasitol. 85, 99–112 (1997).

    Article  CAS  Google Scholar 

  28. Krieger, S. et al. Trypanosomes lacking trypanothione reductase are avirulent and show increased sensitivity to oxidative stress. Mol. Microbiol. 35, 542–552 (2000). This paper describes a now classic application of the tetracycline-inducible system to the study of an important enzyme that is involved in oxidant resistance.

    Article  CAS  Google Scholar 

  29. Ngo, H., Tschudi, C., Gull, K. & Ullu, E. Double-stranded RNA induces mRNA degradation in Trypanosoma brucei. Proc. Natl Acad. Sci. USA 95, 14687–14692 (1998).

    Article  CAS  Google Scholar 

  30. Ullu, E., Djikeng, A., Shi, H. & Tschudi, C. RNA interference: advances and questions. Phil. Trans. R. Soc. Lond. B Biol. Sci. 357, 65–70 (2002). A thoughtful essay that summarizes the current knowledge of RNAi in trypanosomes, addressing both its mechanistic features and its application to parasite biology.

    Article  CAS  Google Scholar 

  31. Wang, Z., Morris, J. C., Drew, M. E. & Englund, P. T. Inhibition of Trypanosoma brucei gene expression by RNA interference using an integratable vector with opposing T7 promoters. J. Biol. Chem. 275, 40174–40179 (2000). A description of the use of a convenient regulatable RNAi vector that allows the rapid testing of the role of any gene in trypanosomes.

    Article  CAS  Google Scholar 

  32. Li, Z. & Wang, C. C. Functional characterization of the 11 non-ATPase subunit proteins in the trypanosome 19S proteasomal regulatory complex. J. Biol. Chem. 277, 42686–42693 (2002).

    Article  CAS  Google Scholar 

  33. Bastin, P., Ellis, K., Kohl, L. & Gull, K. Flagellum ontogeny in trypanosomes studied via an inherited and regulated RNA interference system. J. Cell Sci. 113, 3321–3328 (2000).

    CAS  PubMed  Google Scholar 

  34. Lye, L. F., Cunningham, M. L. & Beverley, S. M. Characterization of quinonoid-dihydropteridine reductase (QDPR) from the lower eukaryote Leishmania major. J. Biol. Chem. 277, 38245–38253 (2002).

    Article  CAS  Google Scholar 

  35. Chen, D. Q. et al. Episomal expression of specific sense and antisense mRNAs in Leishmania amazonensis: modulation of gp63 level in promastigotes and their infection of macrophages in vitro. Infect. Immun. 68, 80–86 (2000).

    Article  CAS  Google Scholar 

  36. Somanna, A., Mundodi, V. & Gedamu, L. Functional analysis of cathepsin B-like cysteine proteases from Leishmania donovani complex. Evidence for the activation of latent transforming growth factor-β. J. Biol. Chem. 277, 25305–25312 (2002).

    Article  CAS  Google Scholar 

  37. Zhang, W. W. & Matlashewski, G. Loss of virulence in Leishmania donovani deficient in an amastigote-specific protein, A2. Proc. Natl Acad. Sci. USA 94, 8807–8811 (1997).

    Article  CAS  Google Scholar 

  38. Zhang, W. W. & Matlashewski, G. Analysis of antisense and double stranded RNA downregulation of A2 protein expression in Leishmania donovani. Mol. Biochem. Parasitol. 107, 315–319 (2000).

    Article  CAS  Google Scholar 

  39. Mochizuki, K., Fine, N. A., Fujisawa, T. & Gorovsky, M. A. Analysis of a piwi-related gene implicates small RNAs in genome rearrangement in Tetrahymena. Cell 110, 689–699 (2002).

    Article  CAS  Google Scholar 

  40. Ruvkun, G. Molecular biology. Glimpses of a tiny RNA world. Science 294, 797–799 (2001).

    Article  CAS  Google Scholar 

  41. Allshire, R. Molecular biology. RNAi and heterochromatin — a hushed-up affair. Science 297, 1818–1819 (2002).

    Article  CAS  Google Scholar 

  42. Plasterk, R. H. RNA silencing: the genome's immune system. Science 296, 1263–1265 (2002). A recent commentary on the role and the importance of RNAi in mitigating the harmful effects of transposable elements.

    Article  CAS  Google Scholar 

  43. Bringaud, F. et al. Identification of non-autonomous non-LTR retrotransposons in the genome of Trypanosoma cruzi. Mol. Biochem. Parasitol. 124, 73–78 (2002).

    Article  CAS  Google Scholar 

  44. Kapler, G. M. & Beverley, S. M. Transcriptional mapping of the amplified region encoding the dihydrofolate reductase–thymidylate synthase of Leishmania major reveals a high density of transcripts, including overlapping and antisense RNAs. Mol. Cell. Biol. 9, 3959–3972 (1989).

    Article  CAS  Google Scholar 

  45. Belli, S. et al. Leishmania major: histone H1 gene expression from the sw3 locus. Exp. Parasitol. 91, 151–160 (1999).

    Article  CAS  Google Scholar 

  46. Wong, A. K., Curotto de Lafaille, M. A. & Wirth, D. F. Identification of a cis-acting gene regulatory element from the lemdr1 locus of Leishmania enriettii. J. Biol. Chem. 269, 26497–26502 (1994).

    CAS  PubMed  Google Scholar 

  47. Borst, P. & Ouellette, M. New mechanisms of drug resistance in parasitic protozoa. Annu. Rev. Microbiol. 49, 427–460 (1995).

    Article  CAS  Google Scholar 

  48. Beverley, S. M. Gene amplification in Leishmania. Annu. Rev. Microbiol. 45, 417–444 (1991).

    Article  CAS  Google Scholar 

  49. Stuart, K. D. Circular and linear multicopy DNAs in Leishmania. Parasitol. Today 7, 158–159 (1991).

    Article  CAS  Google Scholar 

  50. Tripp, C. A., Wisdom, W. A., Myler, P. J. & Stuart, K. D. A multicopy, extrachromosomal DNA in Leishmania infantum contains two inverted repeats of the 27.5-kilobase LD1 sequence and encodes numerous transcripts. Mol. Biochem. Parasitol. 55, 39–50 (1992).

    Article  CAS  Google Scholar 

  51. Patnaik, P. K., Kulkarni, S. K. & Cross, G. A. Autonomously replicating single-copy episomes in Trypanosoma brucei show unusual stability. EMBO J. 12, 2529–2538 (1993).

    Article  CAS  Google Scholar 

  52. Aravind, L., Watanabe, H., Lipman, D. J. & Koonin, E. V. Lineage-specific loss and divergence of functionally linked genes in eukaryotes. Proc. Natl Acad. Sci. USA 97, 11319–11324 (2000).

    Article  CAS  Google Scholar 

  53. Volpe, T. A. et al. Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science 297, 1833–1837 (2002).

    Article  CAS  Google Scholar 

  54. Ketting, R. F., Haverkamp, T. H., van Luenen, H. G. & Plasterk, R. H. Mut-7 of C. elegans, required for transposon silencing and RNA interference, is a homolog of Werner syndrome helicase and RNaseD. Cell 99, 133–141 (1999).

    Article  CAS  Google Scholar 

  55. Lindenbach, B. D. & Rice, C. M. RNAi targeting an animal virus: news from the front. Mol. Cell 9, 925–927 (2002).

    Article  CAS  Google Scholar 

  56. Armstrong, T. C. & Patterson, J. L. Cultivation of Leishmania braziliensis in an economical serum-free medium containing human urine. J. Parasitol. 80, 1030–1032 (1994).

    Article  CAS  Google Scholar 

  57. Gueiros-Filho, F. J. & Beverley, S. M. Selection against the dihydrofolate reductase–thymidylate synthase (DHFR-TS) locus as a probe of genetic alterations in Leishmania major. Mol. Cell. Biol. 16, 5655–5663 (1996).

    Article  CAS  Google Scholar 

  58. Hwang, H. Y. & Ullman, B. Genetic analysis of purine metabolism in Leishmania donovani. J. Biol. Chem. 272, 19488–19496 (1997).

    Article  CAS  Google Scholar 

  59. Beverley, S. M. & Turco, S. J. Lipophosphoglycan (LPG) and the identification of virulence genes in the protozoan parasite Leishmania. Trends Microbiol. 6, 35–40 (1998). This article reviews the role of LPG in Leishmania biology and the importance of LPG-based methods in the development of forward genetics and functional genetic rescue.

    Article  CAS  Google Scholar 

  60. Butcher, B. A. et al. Deficiency in β1,3-galactosyltransferase of a Leishmania major lipophosphoglycan mutant adversely influences the Leishmania–sand fly interaction. J. Biol. Chem. 271, 20573–20579 (1996).

    Article  CAS  Google Scholar 

  61. Turco, S. J., Späth, G. F. & Beverley, S. M. Is lipophosphoglycan a virulence factor? A surprising diversity between Leishmania species. Trends Parasitol. 17, 223–226 (2001).

    Article  CAS  Google Scholar 

  62. Späth, G. F. et al. Lipophosphoglycan is a virulence factor distinct from related glycoconjugates in the protozoan parasite Leishmania major. Proc. Natl Acad. Sci. USA 97, 9258–9263 (2000).

    Article  Google Scholar 

  63. Ilg, T. Lipophosphoglycan of the protozoan parasite Leishmania: stage- and species-specific importance for colonization of the sandfly vector, transmission and virulence to mammals. Med. Microbiol. Immunol. (Berl.) 190, 13–17 (2001).

    Article  CAS  Google Scholar 

  64. Sacks, D. & Kamhawi, S. Molecular aspects of parasite–vector and vector–host interactions in leishmaniasis. Annu. Rev. Microbiol. 55, 453–483 (2001).

    Article  CAS  Google Scholar 

  65. Hoyer, C., Mellenthin, K., Schilhabel, M., Platzer, M. & Clos, J. Use of genetic complementation to identify gene(s) which specify species-specific organ tropism of Leishmania. Med. Microbiol. Immunol. (Berl.) 190, 43–46 (2001).

    Article  CAS  Google Scholar 

  66. Cotrim, P. C., Garrity, L. K. & Beverley, S. M. Isolation of genes mediating resistance to inhibitors of nucleoside and ergosterol metabolism in Leishmania by overexpression/selection. J. Biol. Chem. 274, 37723–37730 (1999).

    Article  CAS  Google Scholar 

  67. Nare, B., Hardy, L. W. & Beverley, S. M. The roles of pteridine reductase 1 and dihydrofolate reductase–thymidylate synthase in pteridine metabolism in the protozoan parasite Leishmania major. J. Biol. Chem. 272, 13883–13891 (1997).

    Article  CAS  Google Scholar 

  68. Nare, B., Luba, J., Hardy, L. W. & Beverley, S. New approaches to Leishmania chemotherapy: pteridine reductase 1 (PTR1) as a target and modulator of antifolate sensitivity. Parasitology 114, S101–S110 (1997).

    PubMed  Google Scholar 

  69. Morris, J. C., Wang, Z., Drew, M. E. & Englund, P. T. Glycolysis modulates trypanosome glycoprotein expression as revealed by an RNAi library. EMBO J. 21, 4429–4438 (2002). A seminal paper that describes the application of an RNAi library for forward genetics in trypanosomes, the first such example for any organism.

    Article  CAS  Google Scholar 

  70. Gueiros-Filho, F. J. & Beverley, S. M. Trans-kingdom transposition of the Drosophila element mariner within the protozoan Leishmania. Science 276, 1716–1719 (1997). The first example of heterologous expression of a transposase across distantly related organisms in vivo , which enabled the development of similar systems in a wide range of eukaryotic species.

    Article  CAS  Google Scholar 

  71. Shi, H., Wormsley, S., Tschudi, C. & Ullu, E. Efficient transposition of preformed synaptic Tn5 complexes in Trypanosoma brucei. Mol. Biochem. Parasitol. 121, 141–144 (2002).

    Article  CAS  Google Scholar 

  72. Goyard, S., Tosi, L. R., Gouzova, J., Majors, J. & Beverley, S. M. New Mos1 mariner transposons suitable for the recovery of gene fusions in vivo and in vitro. Gene 280, 97–105 (2001).

    Article  CAS  Google Scholar 

  73. Tosi, L. R. & Beverley, S. M. cis and trans factors affecting Mos1 mariner evolution and transposition in vitro, and its potential for functional genomics. Nucleic Acids Res. 28, 784–790 (2000).

    Article  CAS  Google Scholar 

  74. Beverley, S. M. et al. Putting the Leishmania genome to work: functional genomics by transposon trapping and expression profiling. Phil. Trans. R. Soc. Lond. B Biol. Sci. 357, 47–53 (2002).

    Article  CAS  Google Scholar 

  75. Gull, K. The cell biology of parasitism in Trypanosoma brucei: insights and drug targets from genomic approaches? Curr. Pharm. Des. 8, 241–256 (2002). A thoughtful perspective on the cell biology of trypanosomes that incorporates both genomic and pharmacological information.

    Article  CAS  Google Scholar 

  76. Sacks, D. & Noben-Trauth, N. The immunology of susceptibility and resistance to Leishmania major in mice. Nature Rev. Immunol. 2, 845–858 (2002). These authors provide the most up-to-date perspective on the complex interplay between the mammalian immune system and the control (or persistence) of the Leishmania parasite.

    Article  CAS  Google Scholar 

  77. Akopyants, N. S. et al. A survey of the Leishmania major Friedlin strain V1 genome by shotgun sequencing: a resource for DNA microarrays and expression profiling. Mol. Biochem. Parasitol. 113, 337–340 (2001).

    Article  Google Scholar 

  78. Matthews, K. R. Developments in the differentiation of Trypanosoma brucei. Parasitol. Today 15, 76–80 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I thank K. Robinson and members of my lab, P. Sharp, J. Donelson, N. Fasel, J. Patterson, R. Tarleton and S. Turco for stimulating discussions and suggestions, and D. Dobson for reading this manuscript. S.M.B. is supported by grants from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Related links

Related links

FURTHER INFORMATION

Gates Foundation

WHO Special Programme for Research and Training in Tropical Diseases

Woods Hole Molecular Parasitology Meeting abstracts

Glossary

ANTIGENIC VARIATION

The changing of the surface antigens by a pathogen to evade the immune response of the host.

SPECTRAL DISEASE

Infections that can manifest in several forms, often varying greatly in severity and symptoms in different individuals, probably reflecting differences in the immune response of the host.

PHAGOLYSOSOME

A vacuole in a cell in which a phagocytosed particle is digested.

ENDOSYMBIONT

An organism which lives in the cells of a host organism in a mutualistic relationship or while doing no apparent harm.

POLYCISTRONIC TRANSCRIPTION

The transcription of two or more adjacent open reading frames after a single transcription initiation event. In trypanosomatids, this might extend more than 60 kb and encompass dozens of open reading frames.

BENT DNA

Intrinsically bent DNA arises from a series of 8–10 adenine residues on the same strand that is thought to assist in packaging it into a tight network.

KINETOPLAST

An organelle in the mitochondrion that consists of a large concatenated DNA network of both minicircles (each with an intrinsically 'bent' sequence and guide RNAs required for RNA editing) and maxicircles (which encode genes that are typically associated with mitochondrial DNA in other organisms). It is a defining feature of the protozoan order Kinetoplastida, to which the trypanosomes belong.

GLYCOSOME

A subcellular compartment, related to the peroxisome, originally named because it contains glycolytic enzymes, although other enzymes have subsequently been found there.

ACIDOCALCISOME

An organelle that contains high concentrations of calcium and polyphosphates. Its role is poorly understood, but it might function as a reservoir for calcium in intracellular signalling and for energy.

FLAGELLAR POCKET

A 'pocket-like' invagination of the cellular membrane from which the flagellum arises in trypanosomatids.

EPISOME

A replicon that can exist either extrachromosomally or when integrated into the bacterial chromosome.

ANEUPLOID

Having an unbalanced chromosome number. An example is trisomy.

POLYPLOID

Having more than two complete sets of chromosomes (two sets being the prevalent diploid state).

LOSS OF HETEROZYGOSITY

(LOH). A loss of one of the alleles at a given locus as a result of a genomic change, such as mitotic deletion, gene conversion or chromosome mis-segregration.

PANNING

A technique for isolating parasite subpopulations; monoclonal antibodies or lectins are attached to solid supports over which parasite populations are passed and allowed to attach; after washing, bound parasites are eluted and recovered.

FLUORESCENCE ACTIVATED CELL SORTING

(FACS). The separation of cells or chromosomes by their fluorescence and light-scattering properties, which are measured as the particles flow in a liquid stream past laser beams. The stream is then broken into droplets, and selected droplets are electrically charged and deflected into collection vessels as they pass through an electric field.

MASS SPECTROMETRY

A technique that provides accurate information about the molecular mass of complex molecules. It can identify extremely small amounts of proteins by their mass-fragment spectra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beverley, S. Protozomics: trypanosomatid parasite genetics comes of age. Nat Rev Genet 4, 11–19 (2003). https://doi.org/10.1038/nrg980

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg980

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing