Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Essay
  • Published:

The road to genome-wide association studies

Abstract

The recent crop of results from genome-wide association studies might seem like a sudden development. However, this blooming follows a long germination period during which the necessary concepts, resources and techniques were developed and assembled. Here, I look back at how the necessary pieces fell into place, focusing on the less well-chronicled days before the launch of the HapMap project, and speculate about future developments.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Linkage disequilibrium around an ancestral mutation.
Figure 2: Alternative designs for genome-wide association studies.
Figure 3: Schematic of a genomic region to be tested for association with a phenotype.

References

  1. Altshuler, D. & Daly, M. Guilt beyond a reasonable doubt. Nature Genet. 39, 813–815 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Bowcock, A. M. Genomics: guilt by association. Nature 447, 645–646 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Gibson, G. & Goldstein, D. B. Human genetics: the hidden text of genome-wide associations. Curr. Biol. 17, R929–R932 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Topol, E. J., Murray, S. S. & Frazer, K. A. The genomics gold rush. JAMA 298, 218–221 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. The International HapMap Consortium. The International HapMap Project. Nature 426, 789–796 (2003).

  6. Botstein, D., White, D. L., Skolnick, M. & Davis, R. W. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 32, 314–331 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Solomon, E. & Bodmer, W. F. Evolution of sickle variant gene. Lancet 1, 923 (1979).

    Article  CAS  PubMed  Google Scholar 

  8. Lander, E. S. & Botstein, D. Mapping complex genetic traits in humans: new methods using a complete RFLP linkage map. Cold Spring Harb. Symp. Quant. Biol. 51, 49–62 (1986).

    Article  PubMed  Google Scholar 

  9. Kan, Y. W. & Dozy, A. M. Polymorphism of DNA sequence adjacent to human beta-globin structural gene: relationship to sickle mutation. Proc. Natl Acad. Sci. USA 75, 5631–5635 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bodmer, W. F. Human genetics: the molecular challenge. Cold Spring Harb. Symp. Quant. Biol. 51, 1–13 (1986).

    Article  CAS  PubMed  Google Scholar 

  11. Donis-Keller, H. et al. A genetic linkage map of the human genome. Cell 51, 319–337 (1987).

    Article  CAS  PubMed  Google Scholar 

  12. Weissenbach, J. et al. A second-generation linkage map of the human genome. Nature 359, 794–801 (1992).

    Article  CAS  PubMed  Google Scholar 

  13. Kerem, B. -S. et al. Identification of the cystic fibrosis gene: genetic analysis. Science 245, 1073–1080 (1989).

    Article  CAS  PubMed  Google Scholar 

  14. Houwen, R. H. J. et al. Genome scanning by searching for shared segments: mapping a gene for benign recurrent intrahepatic cholestasis. Nature Genet. 8, 380–386 (1994).

    Article  CAS  PubMed  Google Scholar 

  15. Puffenberger, E. G. et al. Identity-by-descent and association mapping of a recessive gene for Hirschsprung disease on human chromosome 13q22. Hum. Mol. Genet. 3, 1217–1225 (1994).

    Article  CAS  PubMed  Google Scholar 

  16. Risch, N. Linkage strategies for genetically complex traits. III. The effect of marker polymorphism on analysis of affected relative pairs. Am. J. Hum. Genet. 46, 242–253 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Risch, N. Linkage strategies for genetically complex traits. II. The power of affected relative pairs. Am. J. Hum. Genet. 46, 229–241 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Risch, N. Linkage strategies for genetically complex traits. I. Multilocus models. Am. J. Hum. Genet. 46, 222–228 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Kruglyak, L. & Lander, E. S. Complete multipoint sib-pair analysis of qualitative and quantitative traits. Am. J. Hum. Genet. 57, 439–454 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Risch, N. & Merikangas, K. The future of genetic studies of complex human diseases. Science 273, 1516–1517 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Lander, E. S. The new genomics: global views of biology. Science 274, 536–539 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. Collins, F. S., Guyer, M. S. & Chakravarti, A. Variations on a theme: cataloging human DNA sequence variation. Science 278, 1580–1581 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Wang, D. G. et al. Large-scale identification, mapping and genotyping of single-nucleotide polymorphisms in the human genome. Science 280, 1077–1082 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. The International SNP Map Working Group. A map of human genome sequence variation containing 1 million single nucleotide polymorphisms. Nature 409, 928–933 (2001).

  25. Kruglyak, L. Prospects for whole-genome linkage disequilibrium mapping of common disease genes. Nature Genet. 22, 139–144 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Collins, F. S. et al. New goals for the US human genome project: 1998–2003. Science 282, 682–689 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Pe'er, I. et al. Biases and reconciliation in estimates of linkage disequilibrium in the human genome. Am. J. Hum. Genet. 78, 588–603 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Reich, D. E. et al. Human genome sequence variation and the influence of gene history, mutation and recombination. Nature Genet. 32, 135–142 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. The International HapMap Consortium. A second generation human haplotype map of over 3 million SNPs. Nature 449, 851–861 (2007).

  30. Lonjou, C., Collins, A. & Morton, N. E. Allelic association between marker loci. Proc. Natl Acad. Sci. USA 96, 1621–1626 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kruglyak, L. Genetic isolates: separate but equal? Proc. Natl Acad. Sci. USA 96, 1170–1172 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Carlson, C. S. et al. Additional SNPs and linkage-disequilibrium analyses are necessary for whole-genome association studies in humans. Nature Genet. 33, 518–521 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Gabriel, S. B. et al. The structure of haplotype blocks in the human genome. Science 296, 2225–2229 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Reich, D. E., Gabriel, S. B. & Altshuler, D. Quality and completeness of SNP databases. Nature Genet. 33, 457–458 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Daly, M. J., Rioux, J. D., Schaffner, S. F., Hudson, T. J. & Lander, E. S. High-resolution haplotype structure in the human genome. Nature Genet. 29, 229–232 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Hinds, D. A. et al. Whole-genome patterns of common DNA variation in three human populations. Science 307, 1072–1079 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. The International HapMap Consortium. A haplotype map of the human genome. Nature 437, 1299–1320 (2005).

  38. Hirschhorn, J. N. & Daly, M. J. Genome-wide association studies for common diseases and complex traits. Nature Rev. Genet. 6, 95–108 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Sulem, P. et al. Genetic determinants of hair, eye and skin pigmentation in Europeans. Nature Genet. (2007).

  40. Weedon, M. N. et al. A common variant of HMGA2 is associated with adult and childhood height in the general population. Nature Genet. 39, 1245–1250 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447, 661–678 (2007).

  42. Albert, T. J. et al. Direct selection of human genomic loci by microarray hybridization. Nature Methods 4, 903–905 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Hodges, E. et al. Genome-wide in situ exon capture for selective resequencing. Nature Genet. (2007).

  44. Porreca, G. J. et al. Multiplex amplification of large sets of human exons. Nature Methods 4, 931–936 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Legendre, M., Pochet, N., Pak, T. & Verstrepen, K. J. Sequence-based estimation of minisatellite and microsatellite repeat variability. Genome Res. 17, 1787–1796 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kruglyak, L. & Nickerson, D. A. Variation is the spice of life. Nature Genet. 27, 234–236 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Estivill, X. & Armengol, L. Copy number variants and common disorders: filling the gaps and exploring complexity in genome-wide association studies. PLoS Genet. 3, 1787–1799 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Sinha, H., Nicholson, B. P., Steinmetz, L. M. & McCusker, J. H. Complex genetic interactions in a quantitative trait locus. PLoS Genet. 2, e13 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Brenner, S. E. Common sense for our genomes. Nature 449, 783–784 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Levy, S. et al. The diploid genome sequence of an individual human. PLoS Biol. 5, e254 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Anonymous. Risky business. Nature Genet. 39, 1415 (2007).

  52. McGuire, A. L., Cho, M. K., McGuire, S. E. & Caulfield, T. Medicine. The future of personal genomics. Science 317, 1687 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gusella, J. F. et al. A polymorphic DNA marker genetically linked to Huntington's disease. Nature 306, 234–238 (1983).

    Article  CAS  PubMed  Google Scholar 

  54. Wyman, A. R. & White, R. W. A highly polymorphic locus in human DNA. Proc. Natl. Acad. Sci. USA 77, 6754–6758 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Weber, J. L. & May, P. E. Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Am. J. Hum. Genet. 44, 388–396 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Kruglyak, L. The use of a genetic map of biallelic markers in linkage studies. Nature Genet. 17, 21–24 (1997).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I thank many colleagues over the years, the participants at the 2007 Banbury Center Meeting “From Statistics To Genes: Figuring Out the Molecular Basis of Complex Traits”, D. Altshuler for discussions, and D. Botstein, A. Chakravarti, B. Coller, D. Goldstein and L. Rosenberg for comments on the manuscript. I regret that space constraints prevented me from citing other important work in the field. Supported by a MERIT award from the National Institutes of Health (R37 MH059520) and a James S. McDonnell Centennial Fellowship in Human Genetics.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

OMIM

benign recurrent intrahepatic cholestasis (BRIC)

Hirschsprung disease

FURTHER INFORMATION

Leonid Kruglyak's homepage

Perlegen Ssciences

The International HapMap project

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kruglyak, L. The road to genome-wide association studies. Nat Rev Genet 9, 314–318 (2008). https://doi.org/10.1038/nrg2316

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg2316

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing