Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The genetics of cell death: approaches, insights and opportunities in Drosophila

Key Points

  • Programmed cell death, or apoptosis, is ubiquitous in animals, where it has an important function in development and homeostasis.

  • Drosophila melanogaster is an attractive system in which to study apoptosis because it occurs throughout the fly life cycle and in response to a number of insults that are relevant to human disease. In addition, where studied, cell death in flies and mammals involves similar machinery and mechanisms of regulation.

  • Caspases are the core of the cell-death machinery, and much of the regulation of cell death revolves around controlling their activation and their activity once they are activated. Inhibition of DIAP1, an anti-apoptotic IAP family member essential for cell survival, is an important site of pro-apoptotic protein action in D. melanogaster.

  • Several outstanding questions remain in the study of cell death in D. melanogaster. For example, how do the known components of the canonical cell-death pathway interact and regulate each other's activities? How many core components remain to be discovered? And which other non-canonical cell-death pathways are involved? These, and other issues can be studied using the wide range of sophisticated genetic and molecular techniques that have become available for this organism.

  • F2 loss-of-function screens have led to the identification of important cell-death regulators. New tools have increased the power of these screens to rapidly identify interesting genes.

  • Clone-based screens that involve tissue-specific loss-of-function provide an approach to identifying cell-death regulators in any tissue and at any life stage.

  • The dominant modifier screen provides a method for rapidly identifying components of a specific death-signalling pathway. These are identified as enhancers or suppressors of a dominant phenotype that has been created to produce a sensitized genetic background.

  • Cell-culture-based RNAi screens can identify genes that are required for cell survival or cell death in different contexts.

Abstract

Cell death is ubiquitous in metazoans and involves the action of an evolutionarily conserved process known as programmed cell death or apoptosis. In Drosophila melanogaster, it is now uniquely possible to screen for genes that determine the fate — life or death — of any cell or population of cells during development and in the adult. This review describes these genetic approaches and the key insights into cell-death mechanisms that have been obtained, as well as the outstanding questions that these techniques can help to answer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The core apoptosis machine compared in Caenorhabditis elegans, Drosophila melanogaster and mammals.
Figure 2: Regulation of cell death in Drosophila melanogaster.
Figure 3: Non-apoptotic roles of apoptotic caspases in Drosophila melanogaster.
Figure 4: Genetic screens for cell-death regulators in Drosophila melanogaster.
Figure 5: Cell death phenotypes in Drosophila melanogaster.

Similar content being viewed by others

References

  1. Kerr, J. F. R., Wyllie, A. H. & Curie, A. R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26, 239–257 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Raff, M. C. Social controls on cell survival and cell death. Nature 356, 397–400 (1992).

    CAS  PubMed  Google Scholar 

  3. Vaux, D. L. & Korsmeyer, S. J. Cell death in development. Cell 96, 245–254 (1999).

    CAS  PubMed  Google Scholar 

  4. Baehrecke, E. H. How death shapes life during development. Nature Rev. Mol. Cell Biol. 3, 779–787 (2002).

    CAS  Google Scholar 

  5. Green, D. R. & Evan, G. I. A matter of life and death. Cancer Cell 1, 19–30 (2002).

    CAS  PubMed  Google Scholar 

  6. Benedict, C. A., Norris, P. S. & Ware, C. F. To kill or be killed: viral evasion of apoptosis. Nature Immunol. 3, 1013–1018 (2002).

    CAS  Google Scholar 

  7. James, E. R. & Green, D. R. Manipulation of apoptosis in the host-parasite interaction. Trends Parasitol. 20, 280–287 (2004).

    PubMed  Google Scholar 

  8. Opferman, J. T. & Korsmeyer, S. J. Apoptosis in the development and maintenance of the immune system. Nature Immunol. 4, 410–415 (2003).

    CAS  Google Scholar 

  9. Hochachka, P. W. & Lutz, P. L. Mechanism, origin and evolution of anoxia tolerance in animals. Comp. Biochem. Physiol. B 130, 435–459 (2001).

    CAS  PubMed  Google Scholar 

  10. Vaux, D. L. & Flavell, R. A. Apoptosis genes and autoimmunity. Curr. Opin. Immunol. 12, 719–724 (2000).

    CAS  PubMed  Google Scholar 

  11. Badley, A. D., Roumier, T., Lum, J. J. & Kroemer, G. Mitochondrion-mediated apoptosis in HIV-1 infection. Trends Pharmacol. Sci. 24, 298–305 (2003).

    CAS  PubMed  Google Scholar 

  12. Muqit, M. M. & Feany, M. B. Modelling neurodegenerative diseases in Drosophila: a fruitful approach? Nature Rev. Neurosci. 3, 237–243 (2002).

    CAS  Google Scholar 

  13. Bonini, N. M. & Fortini, M. E. Human neurodegenerative disease modeling using Drosophila. Annu. Rev. Neurosci. 26, 627–656 (2003).

    CAS  PubMed  Google Scholar 

  14. Richardson, H. & Kumar, S. Death to flies: Drosophila as a model system to study programmed cell death. J. Immunol. Methods 265, 21–38 (2002).

    CAS  PubMed  Google Scholar 

  15. Bernards, A. & Hariharan, I. K. Of flies and men — studying human disease in Drosophila. Curr. Opin. Genet. Dev. 11, 274–278 (2001).

    CAS  PubMed  Google Scholar 

  16. Vernooy, S. Y. et al. Cell death regulation in Drosophila: conservation of mechanism and unique insights. J. Cell Biol. 150, F69–76 (2000).

    CAS  PubMed  Google Scholar 

  17. Aravind, L., Dixit, V. M. & Koonin, E. V. Apoptotic molecular machinery: vastly increased complexity in vertebrates revealed by genome comparisons. Science 291, 1279–1284 (2001).

    CAS  PubMed  Google Scholar 

  18. Robinson, A. S., Franz, G. & Atkinson, P. W. Insect transgenesis and its potential role in agriculture and human health. Insect Biochem. Mol. Biol. 34, 113–120 (2004).

    CAS  PubMed  Google Scholar 

  19. St Johnston, D. The art and design of genetic screens: Drosophila melanogaster. Nature Rev. Genet. 3, 176–188 (2002).

    CAS  PubMed  Google Scholar 

  20. Adams, M. D. & Sekelsky, J. J. From sequence to phenotype: reverse genetics in Drosophila melanogaster. Nature Rev. Genet. 3, 189–198 (2002).

    CAS  PubMed  Google Scholar 

  21. McGuire, S. E., Roman, G. & Davis, R. L. Gene expression systems in Drosophila: a synthesis of time and space. Trends Genet. 20, 384–391 (2004).

    CAS  PubMed  Google Scholar 

  22. Boutros, M. et al. Genome-wide RNAi analysis of growth and viability in Drosophila cells. Science 303, 832–835 (2004). Describes the results of a genome-scale, cell-culture-based RNAi screen for genes required for cell survival, growth or metabolism.

    CAS  PubMed  Google Scholar 

  23. Xu, P., Vernooy, S. Y., Guo, M. & Hay, B. A. The Drosophila microRNA mir-14 suppresses cell death and is required for normal fat metabolism. Curr. Biol. 13, 790–795 (2003).

    CAS  PubMed  Google Scholar 

  24. Brennecke, J., Hipfner, D. R., Stark, A., Russell, R. B. & Cohen, S. M. bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell 113, 25–36 (2003). References 23 and 24 report the identification of miRNA cell-death inhibitors from dominant modifier and overexpression screens, respectively.

    CAS  PubMed  Google Scholar 

  25. Wu, S., Huang, J., Dong, J. & Pan, D. hippo encodes a Ste-20 family protein kinase that restricts cell proliferation and promotes apoptosis in conjunction with salvador and warts. Cell 114, 445–456 (2003).

    CAS  PubMed  Google Scholar 

  26. Pantalacci, S., Tapon, N. & Leopold, P. The Salvador partner Hippo promotes apoptosis and cell-cycle exit in Drosophila. Nature Cell Biol. 5, 921–927 (2003).

    CAS  PubMed  Google Scholar 

  27. Harvey, K. F., Pfleger, C. M. & Hariharan, I. K. The Drosophila Mst ortholog, hippo, restricts growth and cell proliferation and promotes apoptosis. Cell 114, 457–467 (2003).

    CAS  PubMed  Google Scholar 

  28. Jia, J., Zhang, W., Wang, B., Trinko, R. & Jiang, J. The Drosophila Ste20 family kinase dMST functions as a tumor suppressor by restricting cell proliferation and promoting apoptosis. Genes Dev. 17, 2514–2519 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Udan, R. S., Kango-Singh, M., Nolo, R., Tao, C. & Halder, G. Hippo, the Drosophila homologue of the MST1/2 kinases, promotes cell proliferation arrest and apoptosis in the Salvador/Warts pathway. Nature Cell Biol. 5, 914–920 (2003). References 25–29 report the identification of HIP, an Mst family kinase, using clone-based screens for negative regulators of cell growth. HIP restricts cell growth and promotes apoptosis.

    CAS  PubMed  Google Scholar 

  30. Hipfner, D. R. & Cohen, S. M. The Drosophila Sterile-20 kinase Slik controls cell proliferation and apoptosis during imaginal disc development. PLOS Biol. 1, E35 (2003).

    PubMed  PubMed Central  Google Scholar 

  31. Arama, E., Agapite, J. & Steller, H. Caspase activity and a specific cytochrome c are required for sperm differentiation in Drosophila. Dev. Cell 4, 687–697 (2003).

    CAS  PubMed  Google Scholar 

  32. Huh, J. R. et al. Multiple apoptotic caspase caspase cascades are required in nonapoptotic roles for Drosophila spermatid individualization. PLOS Biol. 2, 43–53 (2004).

    CAS  Google Scholar 

  33. Huh, J. R., Guo, M. & Hay, B. A. Compensatory proliferation induced by cell death in the Drosophila wing disc requires activity of the apical caspase Dronc in a nonapoptotic role. Curr. Biol. 14, 1262–1266 (2004).

    CAS  PubMed  Google Scholar 

  34. Geisbrecht, E. R. & Montell, D. J. A role for Drosophila IAP1-mediated caspase inhibition in Rac-dependent cell migration. Cell 118, 111–125 (2004). References 31–34 describe non-apoptotic roles for cell-death activators in D. melanogaster.

    CAS  PubMed  Google Scholar 

  35. Degterev, A., Boyce, M. & Yuan, J. A decade of caspases. Oncogene 22, 8543–8567 (2003).

    CAS  PubMed  Google Scholar 

  36. Adams, J. M. Ways of dying: mutiple pathways to apoptosis. Genes Dev. 17, 2481–2495 (2003).

    CAS  PubMed  Google Scholar 

  37. Jiang, X. & Wang, X. Cytochrome c-mediated apoptosis. Annu. Rev. Biochem. 73, 87–106 (2004).

    CAS  PubMed  Google Scholar 

  38. Weil, M. et al. Constitutive expression of the machinery for programmed cell death. J. Cell Biol. 133, 1053–1059 (1996).

    CAS  PubMed  Google Scholar 

  39. Wang, S. L., Hawkins, C. J., Yoo, S. J., Muller, H. A. & Hay, B. A. The Drosophila caspase inhibitor DIAP1 is essential for cell survival and is negatively regulated by HID. Cell 98, 453–463 (1999).

    CAS  PubMed  Google Scholar 

  40. Metzstein, M. M., Stanfield, G. M. & Horvitz, H. R. Genetics of programmed cell death in C. elegans: past, present and future. Trends Genet. 14, 410–416 (1998).

    CAS  PubMed  Google Scholar 

  41. Yan, N. et al. Structural, biochemical, and functional analysis of CED-9 recognition by the proapoptotic proteins EGL-1 and CED-4. Mol. Cell 15, 999–1006 (2004).

    CAS  PubMed  Google Scholar 

  42. Fischer, U., Janicke, R. U. & Schulze-Osthoff, K. Many cuts to ruin: a comprehensive update of caspase substrates. Cell Death Differ. 10, 76–100 (2003).

    CAS  PubMed  Google Scholar 

  43. Shi, Y. Mechanisms of caspase activation and inhibition during apoptosis. Mol. Cell 9, 459–470 (2002).

    CAS  PubMed  Google Scholar 

  44. Salvesen, G. S. & Duckett, C. S. IAP proteins: blocking the road to death's door. Nature Rev. Mol. Cell Biol. 3, 401–410 (2002).

    CAS  Google Scholar 

  45. Igaki, T., Yamamoto-Goto, Y., Tokushige, N., Kanda, H. & Miura, M. Down-regulation of DIAP1 triggers a novel Drosophila cell death pathway mediated by Dark and DRONC. J. Biol. Chem. 277, 23103–23106 (2002).

    CAS  PubMed  Google Scholar 

  46. Muro, I., Hay, B. A. & Clem, R. J. The Drosophila DIAP1 protein is required to prevent accumulation of a continuously generated, processed form of the apical caspase DRONC. J. Biol. Chem. 277, 49644–49650 (2002).

    CAS  PubMed  Google Scholar 

  47. Rodriguez, A., Chen, P., Oliver, H. & Abrams, J. M. Unrestrained caspase-dependent cell death caused by loss of Diap1 function requires the Drosophila Apaf-1 homolog, Dark. EMBO J. 21, 2189–2197 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Zimmermann, K. C., Ricci, J. E., Droin, N. M. & Green, D. R. The role of ARK in stress-induced apoptosis in Drosophila cells. J. Cell Biol. 156, 1077–1087 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Muro, I., Monser, K. & Clem, R. J. Mechanism of Dronc activation in Drosophila cells. J. Cell Sci. 117, 5035–5041 (2004).

    CAS  PubMed  Google Scholar 

  50. Hay, B. A., Wassarman, D. A. & Rubin, G. M. Drosophila homologs of baculovirus inhibitor of apoptosis proteins function to block cell death. Cell 83, 1253–1262 (1995). This classic paper describes the first dominant modifier screen for cell-death inhibitors, which identified DIAP1 in flies.

    CAS  PubMed  Google Scholar 

  51. Hay, B. A. Understanding IAP function and regulation: a view from Drosophila. Cell Death Differ. 7, 1045–1056 (2000).

    CAS  PubMed  Google Scholar 

  52. Bergmann, A., Yang, A. Y. & Srivastava, M. Regulators of IAP function: coming to grip with the grim reaper. Curr. Opin. Cell Biol. 15, 717–724 (2003).

    CAS  PubMed  Google Scholar 

  53. Kuranaga, E. et al. Reaper-mediated inhibition of DIAP1-induced DTRAF1 degradation results in activation of JNK in Drosophila. Nature Cell Biol. 4, 705–710 (2002).

    CAS  PubMed  Google Scholar 

  54. Kanda, H. & Miura, M. Regulatory roles of JNK in programmed cell death. J. Biochem. (Tokyo) 136, 1–6 (2004).

    CAS  Google Scholar 

  55. Yoo, S. J. et al. Apoptosis inducers Hid, Rpr and Grim negatively regulate levels of the caspase inhibitor DIAP1 by distinct mechanisms. Nature Cell Biol. 4, 416–424 (2002).

    CAS  PubMed  Google Scholar 

  56. Holley, C. L., Olson, M. R., Colon-Ramos, D. A. & Kornbluth, S. Reaper eliminates IAP proteins through stimulated IAP degradation and generalized translational inhibition. Nature Cell Biol. 4, 439–444 (2002).

    CAS  PubMed  Google Scholar 

  57. Claveria, C., Caminero, E., Martinez, A. C., Campuzano, S. & Torres, M. GH3, a novel proapoptotic domain in Drosophila Grim, promotes a mitochondrial death pathway. EMBO J. 21, 3327–3336 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Chen, P., Ho, S.-I., Shi, Z. & Abrams, J. M. Bifunctional killing activity encoded by conserved reaper proteins. Cell Death Differ. 11, 704–713 (2004).

    CAS  PubMed  Google Scholar 

  59. Huh, J. R. & Hay, B. A. Sculpture of a fly's head. Nature 418, 926–928 (2002).

    CAS  PubMed  Google Scholar 

  60. Kumar, S. & Cakouros, D. Transcriptional control of the core cell-death machinery. Trends Biochem. 29, 193–199 (2004).

    CAS  Google Scholar 

  61. Lohmann, I., McGinnis, N., Bodmer, M. & McGinnis, W. The Drosophila Hox gene deformed sculpts head morphology via direct regulation of the apoptosis activator reaper. Cell 110, 457–466 (2002). This paper reports the identification of RPR as a target of the transcription factor DFD in a screen for mutations that display aspects of the Deformed embryonic phenotype.

    CAS  PubMed  Google Scholar 

  62. Brodsky, M. H. et al. Drosophila p53 binds a damage response element at the reaper locus. Cell 101, 103–113 (2000).

    CAS  PubMed  Google Scholar 

  63. Cakouros, D., Daish, T. J. & Kumar, S. Ecdysone receptor directly binds the promoter of the Drosophila caspase dronc, regulating its expression in specific tissues. J. Cell Biol. 165, 631–640 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Franc, N. C. Phagocytosis of apoptotic cells in mammals, Caenorhabditis elegans and Drosophila melanogaster: molecular mechanisms and physiological consequences. Front Biosci. 7, d1298–1313 (2002).

    CAS  PubMed  Google Scholar 

  65. Mergliano, J. & Minden, J. S. Caspase-independent cell engulfment mirrors cell death pattern in Drosophila embryos. Development 130, 5779–5789 (2003). This paper identifies a RPR-, HID-, GRIM- and p35-independent step in cell death during fly embryogenesis.

    CAS  PubMed  Google Scholar 

  66. Igaki, T. & Miura, M. Role of bcl-2 family members in invertebrates. Biochim. Biophys. Acta 1644, 73–81 (2004).

    CAS  PubMed  Google Scholar 

  67. McCall, K. Eggs over easy: cell death in the Drosophila ovary. Dev. Biol. 274, 3–14 (2004).

    CAS  PubMed  Google Scholar 

  68. Baehrecke, E. H. Autophagic programmed cell death in Drosophila. Cell Death Differ. 10, 940–945 (2003).

    CAS  PubMed  Google Scholar 

  69. Driscoll, M. & Gerstbrein, B. Dying for a cause: invertebrate genetics takes on human neurodegeneration. Nature Rev. Genet. 4, 181–194 (2003).

    CAS  PubMed  Google Scholar 

  70. Jackson, G. R. et al. Polyglutamine-expanded human huntingtin transgenes induce degeneration of Drosophila photoreceptor neurons. Neuron 21, 633–642 (1998).

    CAS  PubMed  Google Scholar 

  71. Hsu, C. D. et al. Limited role of developmental programmed cell death pathways in Drosophila norpA retinal degeneration. J. Neurosci. 24, 500–507 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. McLaughlin, B. The kinder side of killer proteases: caspase activation contributes to neuroprotection and CNS remodeling. Apoptosis 9, 111–121 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Schwerk, C. & Schulze-Osthoff, K. Non-apoptotic functions of caspases in cellular proliferation and differentiation. Biochem. Pharmacol. 66, 1453–1458 (2003).

    CAS  PubMed  Google Scholar 

  74. Wolff, T. & Ready, D. F. Cell death in normal and rough eye mutants of Drosophila. Development 113, 825–839 (1991). Reports the first cell death mutants to be identified in D. melanogaster.

    CAS  PubMed  Google Scholar 

  75. White, K. et al. Genetic control of programmed cell death in Drosophila. Science 264, 677–683 (1994). This classic paper described the deficiency screen that led to the identification of rpr , and ultimately hid and grim.

    CAS  PubMed  Google Scholar 

  76. Grether, M. E., Abrams, J. M., Agapite, J., White, K. & Steller, H. The head involution defective gene of Drosophila melanogaster functions in programmed cell death. Genes Dev. 9, 1694–1708 (1995).

    CAS  PubMed  Google Scholar 

  77. Chen, P., Nordstrom, W., Gish, B. & Abrams, J. M. grim, a novel cell death gene in Drosophila. Genes Dev. 10, 1773–1782 (1996).

    CAS  PubMed  Google Scholar 

  78. Peterson, C., Carney, G. E., Taylor, B. J. & White, K. reaper is required for neuroblast apoptosis during Drosophila development. Development 128, 1467–1476 (2002).

    Google Scholar 

  79. Hiesinger, P. R. & Bellen, H. J. Flying in the face of total disruption. Nature Genet. 36, 211–212 (2004).

    CAS  PubMed  Google Scholar 

  80. Jassim, O. W., Fink, J. L. & Cagan, R. L. Dmp53 protects the Drosophila retina during a developmentally regulated DNA damage response. EMBO J. 22, 5622–5632 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Foe, V. E. & Alberts, B. M. Reversible chromosome condensation induced in Drosophila embryos by anoxia: visualization of interphase nuclear organization. J. Cell Biol. 100, 1623–1636 (1985).

    CAS  PubMed  Google Scholar 

  82. Teodoro, R. O. & O'Farrell, P. H. Nitric oxide-induced suspended animation promotes survival during hypoxia. EMBO J. 22, 580–587 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Tapon, N. et al. salvador promotes both cell cycle exit and apoptosis in Drosophila and is mutated in human cancer cell lines. Cell 110, 467–478 (2002).

    CAS  PubMed  Google Scholar 

  84. Kango-Singh, M. et al. Shar-pei mediates cell proliferation arrest during imaginal disc growth in Drosophila. Development 129, 5719–5730 (2002).

    CAS  PubMed  Google Scholar 

  85. Justice, R. W., Zilian, O., Woods, D. F., Noll, M. & Bryant, P. J. The Drosophila tumor-suppressor gene warts encodes a homolog of human myotonic-dystrophy kinase and is required for the control of cell-shape and proliferation. Genes Dev. 9, 534–546 (1995).

    CAS  PubMed  Google Scholar 

  86. Xu, T. A., Wang, W. Y., Zhang, S., Stewart, R. A. & Yu, W. Identifying tumor suppressors in genetic mosaics: the Drosophila lats gene encodes a putative protein kinase. Development 121, 1053–1063 (1995).

    CAS  PubMed  Google Scholar 

  87. Hay, B. A. & Guo, M. Coupling cell growth, proliferation, and death: hippo weighs in. Dev. Cell 5, 361–363 (2003).

    CAS  PubMed  Google Scholar 

  88. Kimura, K. -I., Kodama, A., Hayasaka, Y. & Ohta, T. Activation of the cAMP/PKA signaling pathway is required for post-ecdysial cell death in wing epidermal cells of Drosophila. Development 131, 1597–1606 (2004). This paper uses differential GFP labelling of live versus dead cells to visualize the kinetics and genetic requirements for cell death in the adult fly wing.

    CAS  PubMed  Google Scholar 

  89. Perrimon, N., Engstrom, L. & Mahowald, A. P. Zygotic lethals with specific maternal effect phenotypes in Drosophila melanogaster. I. Loci on the X chromosome. Genetics 121, 333–352 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Martin, S. G., Leclerc, V., Smith-Litiere, K. & St. Johnston, D. The identification of novel genes required for Drosophila anteroposterior axis formation in a germline clone screen using GFP-Staufen. Development 130, 4201–4215 (2003).

    CAS  PubMed  Google Scholar 

  91. Luschnig, S. et al. An F1 genetic screen for maternal-effect mutations affecting embryonic pattern formation in Drosophila melanogaster. Genetics 167, 325–342 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Bellotto, M. et al. Maternal-effect loci involved in Drosophila oogenesis and embryogenesis: P element-induced mutations on the third chromosome. Int. J. Dev. Biol. 46, 149–157 (2002).

    PubMed  Google Scholar 

  93. Hays, R., Wickline, L. & Cagan, R. Morgue mediates apoptosis in the Drosophila melanogaster retina by promoting degradation of DIAP1. Nature Cell Biol. 4, 425–431 (2002).

    CAS  PubMed  Google Scholar 

  94. Hay, B. A., Maile, R. & Rubin, G. M. P element insertion-dependent gene activation in the Drosophila eye. Proc. Natl Acad. Sci. USA 94, 5195–5200 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Rorth, P. A modular misexpression screen in Drosophila detecting tissue-specific phenotypes. Proc. Natl Acad. Sci. USA 93, 12418–12422 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Vernooy, S. Y. et al. Drosophila Bruce can potently suppress Rpr- and Grim-dependent but not Hid-dependent cell death. Curr. Biol. 12, 1164–1168 (2002).

    CAS  PubMed  Google Scholar 

  97. Wing, J. P. et al. Drosophila Morgue is an F box/ubiquitin conjugase domain protein important for grim-reaper mediated apoptosis. Nature Cell Biol. 4, 451–456 (2002).

    CAS  PubMed  Google Scholar 

  98. Ryoo, H. D., Bergmann, A., Gonen, H., Ciechanover, A. & Steller, H. Regulation of Drosophila IAP1 degradation and apoptosis by reaper and ubcD1. Nature Cell Biology 4, 432–438 (2002).

    CAS  PubMed  Google Scholar 

  99. Hipfner, D. R., Weigmann, K. & Cohen, S. M. The bantam gene regulates Drosophila growth. Genetics 161, 1527–1537 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Rong, Y. S. Gene targeting by homologous recombination: a powerful addition to the genetic arsenal for Drosophila geneticists. Biochem. Biophys. Res. Comm. 297, 1–5 (2002).

    CAS  PubMed  Google Scholar 

  101. Meister, G. & Tuschl, T. Mechanisms of gene silencing by double-stranded RNA. Nature 431, 343–349 (2004).

    CAS  PubMed  Google Scholar 

  102. Foley, E. & O'Farrell, P. H. Functional dissection of an innate immune response by a genome-wide RNAi screen. PLOS Biol. 2, e203 (2004). A cell-culture-based reporter system was used to identify regulators of the innate immune response, which requires the caspase DREDD. A potential negative regulator of DREDD activity, DNR1, was identified.

    PubMed  PubMed Central  Google Scholar 

  103. Wu, R. Z., Bailey, S. N. & Sabatini, D. M. Cell-biological applications of transfected-cell microarrays. Trends Cell Biol. 12, 485–488 (2002).

    CAS  PubMed  Google Scholar 

  104. Eschalier, G. Drosophila Cells in Culture (Academic Press, New York, 1997).

    Google Scholar 

  105. Chen, P., Rodriguez, A., Erskine, R., Thach, T. & Abrams, J. M. Dredd, a novel effector of the apoptosis activators Reaper, Grim, and Hid in Drosophila. Dev. Biol. 201, 202–216 (1998).

    CAS  PubMed  Google Scholar 

  106. Hultmark, D. Drosophila immunity: paths and patterns. Curr. Opin.Immunol. 15, 12–19 (2003).

    CAS  PubMed  Google Scholar 

  107. Lockshin, R. A. & Zakeri, Z. Caspase-independent cell death? Oncogene 23, 2766–2773 (2004).

    CAS  PubMed  Google Scholar 

  108. Jaattela, M. Multiple cell death pathways as regulators of tumour initiation and progression. Oncogene 23, 2746–2756 (2004).

    PubMed  Google Scholar 

  109. Reiter, L. T., Potocki, L., Chien, S., Gribskov, M. & Bier, E. A systematic analysis of human disease-associated gene sequences in Drosophila melanogaster. Genome Res. 11, 1114–1125 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Giot, L. et al. A protein interaction map of Drosophila melanogaster. Science 302, 1727–1736 (2003). This paper is remarkable for its failure to identify any of the known physical interactions between components of the core apoptotic machinery, thereby highlighting the limitations of this approach.

    CAS  PubMed  Google Scholar 

  111. Vucic, D., Kaiser, W. J. & Miller, L. K. Inhibitor of apoptosis proteins physically interact with and block apoptosis induced by Drosophila proteins HID and GRIM. Mol. Cell Biol. 18, 3300–3309 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Work in the authors' laboratories is supprted by NIH (National Institutes of Health) grants. We apologize to authors whose work could not be cited directly owing to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce A. Hay.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez

rpr

hid

grim

skl

hippo

salvador

warts

OMIM

Parkinson disease

Swiss-Prot

CED-3

CED-4

CED-9

DRONC

DIAP1

FURTHER INFORMATION

Guo's laboratory

Hay's laboratory

Glossary

RNAi-MEDIATED KNOCKDOWN

A phenomenon in which the expression of a gene is temporarily inhibited ('knocked down') when a complementary dsRNA molecule is introduced into the organism.

SATURATION

A screen that is designed to induce at least one mutation in every gene is said to have been carried out to saturation.

BACULOVIRUS CASPASE INHIBITOR P35

Baculoviruses are large DNA viruses that infect arthropods. p35 is a baculovirus-encoded protein that inhibits cell death by acting as a suicide substrate for many caspases.

RNA INTERFERENCE (RNAi)

A form of post-transcriptional gene silencing, in which dsRNA induces degradation of the homologous endogenous transcripts, mimicking the effect of the reduction, or loss, of gene activity.

EPISTASIS

When the phenotype associated with mutation of a gene (A) is masked by mutation in a second gene (B), B is said to be epistatic to A. In a switch pathway (a pathway in which the output is one of two states, often developmental fates), such an observation would indicate that genes A and B act in the same pathway, and that A acts through B.

SENSITIZED GENETIC BACKGROUND

A genetic background in which modest (twofold) changes in the dose of pathway components produce a phenotype that would not be observed in a wild-type background.

DOMINANT MODIFIER SCREEN

A signalling pathway is hyperactivated or partially deactivated in a specific tissue. These flies are often sensitive to modest changes in the levels of pathway components (heterozygosity) that would otherwise not result in a visible phenotype — but only in the specific tissue that is targeted.

NURSE CELLS

Female germline-derived cells that support the development of the oocyte. Nurse cells are interconnected to each other and to the developing oocyte through intercellular bridges that facilitate transport of RNA and protein into the growing oocyte.

IMAGINAL DISC

An epithelial sheet of cells that occurs as a sac-like infolding of the epithelium in the larva. Small groups of imaginal disc founder cells arise in the embryo. They continue to divide until pupation, when they differentiate into many adult structures (wings, legs, eyes, antennae and genitalia).

SYNCYTIUM

A multinucleate cell in which the nuclei are not separated by cell membranes.

AUTOPHAGY

In autophagic cell death, as opposed to apoptotic cell death, the cell is degraded largely from within, with little or no help from phagocytes. Bulk cytoplasm and organelles are sequestered within double-membrane-bound vesicles. These ultimately fuse with the lysosome and their contents are degraded.

SPERMATID

A post-meiotic haploid male germ cell.

BORDER CELLS

A small group of specialized somatic follicle cells. They delaminate from the follicular epithelium, invade the underlying germline tissue and migrate towards the oocyte.

MITOTIC RECOMBINATION

A crossover between two homologous dsDNA molecules that leads to a physical exchange of DNA and genetic information. This recombination occurs frequently during meiosis, but is relatively rare during mitosis. As a consequence of mitotic recombination, cells can undergo a 'loss of heterozygosity' or gene conversion.

BALANCED STOCK

A stock that carries a lethal mutation on one chromosome homologue, and a balancer chromosome on the other. A balancer chromosome carries multiple inversions that prevent recombination with the lethal-bearing chromosome, a recessive lethal mutation and a dominant marker. Matings between balanced lethal flies produce only balanced lethal adult progeny — a stable stock.

ISOGENIC

Cells or organisms that are derived from the same parent and therefore have almost identical genomes.

GERMLINE CLONE SCREEN

A genetic screen in which clones of homozygous-mutant germline tissue are produced in adult females. Oocytes and eggs derived from these clones (which can be distinguished from those derived from heterozygous germline tissue in several ways) can be examined for phenotypes during oogenesis and embryogenesis.

P-ELEMENT

A member of a family of transposable elements that are widely used as the basis of tools for mutating and manipulating the genome of Drosophila melanogaster.

CELL MICROARRAYS

Cells are plated directly onto a slide containing thousands of microarrayed spots of DNA. Cells landing on these spots are transfected with the arrayed plasmids, and can then be scored in various assays.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hay, B., Huh, J. & Guo, M. The genetics of cell death: approaches, insights and opportunities in Drosophila. Nat Rev Genet 5, 911–922 (2004). https://doi.org/10.1038/nrg1491

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg1491

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing