Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Height matters—from monogenic disorders to normal variation

Abstract

Height is a classic polygenic quantitative trait with a high level of heritability. As it is a simple and stable parameter to measure, height is a model for both common, complex disorders and monogenic, Mendelian disease. In this Review, we examine height from the perspective of monogenic and complex genetics and discuss the lessons learned so far. We explore several examples of rare sequence variants with large effects on height and compare these variants to the common variants identified in genome-wide association studies that have small effects on height. We discuss how copy number changes or genetic interactions might contribute to the unidentified aspects of the heritability of height. We also ask whether information derived from genome-wide association studies on specific loci in the vicinity of genes can be used for further research in clinical paediatric endocrinology. Furthermore, we address key challenges that remain for gene discovery and for the transition of moving from genomic localization to mechanistic insights, with an emphasis on using next-generation sequencing to identify causative variants of people at the extremes of height distribution.

Key Points

  • Height is a classic polygenic trait and a very good model for both common, complex disorders and monogenic, Mendelian disease

  • Extremes in height are often caused by monogenic mutations in one of the genes critical for control of growth

  • The role of four prominent genes implicated in growth control illustrates the diversity of the different pathways involved; progress on therapeutic options depends on the underlying gene defect and mechanism

  • Variations within the normal range of height are associated with common variants that have been uncovered by genome-wide association studies (GWAS); a discrepancy still exists between heritability and the identified loci

  • Comparison of common variants detected by GWAS and genes with a role in monogenic short stature shows some overlap; GWAS might pinpoint further genes that cause monogenic short stature

  • Next-generation sequencing will probably replace GWAS and thus yield insight into the genetic pathways involved in monogenic and complex disorders

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Variability in human height.
Figure 2: Discovery of rare and common variants on a historical timeframe.
Figure 3: Distribution of rare variants and common variants on a normal distribution curve.

Similar content being viewed by others

References

  1. Judge, T. A. & Cable, D. M. The effect of physical height on workplace success and income: preliminary test of a theoretical model. J. Appl. Psychol. 89, 428–441 (2004).

    Article  Google Scholar 

  2. Silventoinen, K. Determinants of variation in adult body height. J. Biosoc. Sci. 35, 263–285 (2003).

    Article  Google Scholar 

  3. Silventoinen, K. et al. Heritability of adult body height: a comparative study of twin cohorts in eight countries. Twin Res. 6, 399–408 (2003).

    Article  Google Scholar 

  4. Macgregor, S., Cornes, B. K., Martin, N. G. & Visscher, P. M. Bias, precision and heritability of self-reported and clinically measured height in Australian twins. Hum. Genet. 120, 571–580 (2006).

    Article  Google Scholar 

  5. Lango Allen, H. et al. Hundreds of variants clustered in genomic loci and biological pathways affect human height. Nature 467, 832–838 (2010).

    Article  CAS  Google Scholar 

  6. Godfrey, M. & Hollister, D. W. Type II achondrogenesis-hypochondrogenesis: identification of abnormal type II collagen. Am. J. Hum. Genet. 43, 904–913 (1998).

    Google Scholar 

  7. Vissing, H. et al. Glycine to serine substitution in the triple helical domain of pro-alpha 1 (II) collagen results in a lethal perinatal form of short-limbed dwarfism. J. Biol. Chem. 264, 18265–18267 (1989).

    CAS  PubMed  Google Scholar 

  8. Shiang, R. et al. Mutations in the transmembrane domain of FGFR3 cause the most common genetic form of dwarfism, achondroplasia. Cell 78, 335–342 (1994).

    Article  CAS  Google Scholar 

  9. Rao, E. et al. Pseudoautosomal deletions encompassing a novel homeobox gene cause growth failure in idiopathic short stature and Turner syndrome. Nat. Genet. 16, 54–63 (1997).

    Article  CAS  Google Scholar 

  10. Tartaglia, M. et al. Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome. Nat. Genet. 29, 465–468 (2001).

    Article  CAS  Google Scholar 

  11. Raben, M. S. Treatment of a pituitary dwarf with human growth hormone. J. Clin. Endocrinol. Metab. 18, 901–903 (1958).

    Article  CAS  Google Scholar 

  12. Ranke, M., Weber, B. & Bierich, J. R. Long-term response to human growth hormone in 36 children with idiopathic growth hormone deficiency. Eur. J. Pediatr. 132, 221–238 (1979).

    Article  CAS  Google Scholar 

  13. Phillips, J. A. 3rd, Hjelle, B. L., Seeburg, P. H. & Zachmann, M. Molecular basis for familial isolated growth hormone deficiency. Proc. Natl Acad. Sci. USA 78, 6372–6375 (1981).

    Article  CAS  Google Scholar 

  14. Mullis, P. E. Genetic control of growth. Eur. J. Endocrinol. 152, 11–31 (2005).

    Article  CAS  Google Scholar 

  15. Prince, K. L., Walvoord, E. C. & Rhodes, S. J. The role of homeodomain transcription factors in heritable pituitary disease. Nat. Rev. Endocrinol. 7, 727–737 (2011).

    Article  CAS  Google Scholar 

  16. Sherlock, M., Woods, C. & Sheppard, M. C. Medical therapy in acromegaly. Nat. Rev. Endocrinol. 7, 291–300 (2011).

    Article  CAS  Google Scholar 

  17. Ribeiro-Oliveira, A. Jr. & Barkan, A. The changing face of acromegaly-advances in diagnosis and treatment. Nat. Rev. Endocrinol. 8, 605–611 (2012).

    Article  Google Scholar 

  18. Horton, W. A., Hall, J. G. & Hecht, J. T. Achondroplasia. Lancet 370, 162–172 (2007).

    Article  CAS  Google Scholar 

  19. Rousseau, F. et al. Mutations in the gene encoding fibroblast growth factor receptor-3 in achondroplasia. Nature 371, 252–254 (1994).

    Article  CAS  Google Scholar 

  20. Tavormina, P. L. et al. Thanatophoric dysplasia (types I and II) caused by distinct mutations in fibroblast growth factor receptor 3. Nat. Genet. 9, 32–38 (1995).

    Article  Google Scholar 

  21. Bellus, G. A. et al. A recurrent mutation in the tyrosine kinase domain of fibroblast growth factor receptor 3 causes hypochondroplasia. Nat. Genet. 10, 357–359 (1995).

    Article  CAS  Google Scholar 

  22. Rousseau, F. et al. Stop codon FGFR3 mutations in thanatophoric dwarfism type 1. Nat. Genet. 10, 11–12 (1995).

    Article  CAS  Google Scholar 

  23. Rousseau, F. et al. Missense FGFR3 mutations create cysteine residues in thanatophoric dwarfism type I (TD1). Hum. Mol. Genet. 5, 509–512 (1996).

    Article  CAS  Google Scholar 

  24. Toydemir, R. M. et al. A novel mutation in FGFR3 causes campodactyly, tall stature, and hearing loss (CATSHL) syndrome. Am. J. Hum. Genet. 79, 935–941 (2006).

    Article  CAS  Google Scholar 

  25. Belin, V. et al. SHOX mutations in dyschondrosteosis (Leri–Weill syndrome). Nat. Genet. 19, 67–69 (1998).

    Article  CAS  Google Scholar 

  26. Shears, D. J. et al. Mutation and deletion of the pseudoautosomal gene SHOX cause Leri–Weill dyschondrosteosis. Nat. Genet. 19, 70–73 (1998).

    Article  CAS  Google Scholar 

  27. Rappold, G. et al. Genotypes and phenotypes in children with short stature: clinical indicators of SHOX haploinsufficiency. J. Med. Genet. 44, 306–313 (2007).

    Article  CAS  Google Scholar 

  28. Rosilio, M. et al. Genotypes and phenotypes of children with SHOX deficiency in France. J. Clin. Endocrinol. Metab. 97, E1257–E1265 (2012).

    Article  CAS  Google Scholar 

  29. Marchini, A. et al. The short stature homeodomain protein SHOX induces cellular growth arrest and apoptosis and is expressed in human growth plate chondrocytes. J. Biol. Chem. 279, 37103–37114 (2004).

    Article  CAS  Google Scholar 

  30. Ottesen, A. M. et al. Increased number of sex chromosomes affects height in a nonlinear fashion: a study of 305 patients with sex chromosome aneuploidy. Am. J. Med. Genet. A 152A, 1206–1212 (2010).

    Article  Google Scholar 

  31. Kanaka-Gantenbein, C. et al. Tall stature, insulin resistance, and disturbed behavior in a girl with the triple X syndrome harboring three SHOX genes: offspring of a father with mosaic Klinefelter syndrome but with two maternal X chromosomes. Horm. Res. 61, 205–210 (2004).

    CAS  PubMed  Google Scholar 

  32. Ottesen, A. M. et al. Increased number of sex chromosomes affect height in a nonlinear fashion: a study of 305 patients with sex chromosome aneuploidy. Am. J. Med. Genet. 152A, 1206–1212 (2010).

    Article  Google Scholar 

  33. Canadas, V., Vilacosta, I., Bruna, I. & Fuster, V. Marfan syndrome. Pathophysiology and diagnosis. Nat. Rev. Cardiol. 7, 256–265 (2010).

    Article  CAS  Google Scholar 

  34. Le Goff, C. et al. Mutations in the TGFβ binding-protein-like domain 5 of FBN1 are responsible for acromicric and geleophysic dysplasias. Am. J. Hum. Genet. 89, 7–14 (2011).

    Article  CAS  Google Scholar 

  35. Faivre, L. et al. In frame fibrillin-1 gene deletion in autosomal dominant Weill–Marchesani syndrome. J. Med. Genet. 40, 34–36 (2003).

    Article  CAS  Google Scholar 

  36. Wit, J. M. Diagnosis and management of disorders of IGF-I synthesis and action. Pediatr. Endocrinol. Rev. 9 (Suppl. 1), 538–540 (2011).

    PubMed  Google Scholar 

  37. David, A. et al. Evidence for a continuum of genetic, phenotypic, and biochemical abnormalities in children with growth hormone insensitivity. Endocr. Rev. 32, 472–497 (2011).

    Article  CAS  Google Scholar 

  38. Domené, H. M. et al. Human acid-labile subunit deficiency: clinical, endocrine and metabolic consequences. Horm. Res. 72, 129–141 (2009).

    Article  Google Scholar 

  39. Horton, W. A. Fibroblast growth factor receptor 3 and the human chondrodysplasias. Curr. Opin. Pediatr. 9, 437–442 (1997).

    Article  CAS  Google Scholar 

  40. Aviezer, D., Golembo, M. & Yayon, A. Fibroblast growth factor receptor-3 as a therapeutic target for Achondroplasia--genetic short limbed dwarfism. Curr. Drug Targets 4, 353–365 (2003).

    Article  CAS  Google Scholar 

  41. Jonquoy, A. et al. A novel tyrosine kinase inhibitor restores chondrocyte differentiation and promotes bone growth in a gain-of-function Fgfr3 mouse model. Hum Mol Genet. 21, 841–851 (2012).

    Article  CAS  Google Scholar 

  42. Qing, J. et al. Antibody-based targeting of FGFR3 in bladder carcinoma and t(4;14)-positive multiple myeloma in mice. J. Clin. Invest. 119, 1216–1129 (2009).

    Article  CAS  Google Scholar 

  43. Jin, M. et al. A novel FGFR3-binding peptide inhibits FGFR3 signaling and reverses the lethal phenotype of mice mimicking human thanatophoric dysplasia. Hum. Mol. Genet. 21, 5443–5455 (2012).

    Article  CAS  Google Scholar 

  44. Yasoda, A. et al. Systemic administration of C-type natriuretic peptide as a novel therapeutic strategy for skeletal dysplasias. Endocrinology 150, 3138–3144 (2009).

    Article  CAS  Google Scholar 

  45. Laederich, M. B. & Horton, W. A. FGFR3 targeting strategies for achondroplasia. Expert Rev. Mol. Med. 14, e11 (2012).

    Article  CAS  Google Scholar 

  46. Binder, G. Short stature due to SHOX deficiency: genotype, phenotype, and therapy. Horm. Res. Paediatr. 75, 81–89 (2011).

    Article  CAS  Google Scholar 

  47. Benito-Sanz, S. et al. A novel class of Pseudoautosomal region 1 deletions downstream of SHOX is associated with Leri–Weill dyschondrosteosis. Am. J. Hum. Genet. 77, 533–544 (2005).

    Article  CAS  Google Scholar 

  48. Sabherwal, N. et al. Long-range conserved non-coding SHOX sequences regulate expression in developing chicken limb and are associated with short stature phenotypes in human patients. Hum. Mol. Genet. 16, 210–22 (2007).

    Article  CAS  Google Scholar 

  49. Blum, W. F. et al. Growth hormone is effective in treatment of short stature associated with short stature homeobox-containing gene deficiency: Two-year results of a randomized, controlled, multicenter trial. J. Clin. Endocrinol. Metab. 92, 219–228 (2007).

    Article  CAS  Google Scholar 

  50. Brooke, B. S. et al. Angiotensin II blockade and aortic-root dilation in Marfan's syndrome. N. Engl. J. Med. 358, 2787–2795 (2008).

    Article  CAS  Google Scholar 

  51. Bolar, N., Van Laer, L., & Loeys, B. L. Marfan syndrome: from gene to therapy. Curr. Opin. Pediatr. 24, 498–504 (2012).

    Article  CAS  Google Scholar 

  52. Neptune, E. R. et al. Dysregulation of TGF-β activation contributes to pathogenesis in Marfan syndrome. Nat. Genet. 33, 407–411 (2003).

    Article  CAS  Google Scholar 

  53. Loeys, B. L. et al. Aneurysm syndromes caused by mutations in the TGF-β receptor. N. Engl. J. Med. 355, 788–798 (2006).

    Article  CAS  Google Scholar 

  54. Holm, T. M. et al. Noncanonical TGFβ signaling contributes to aortic aneurysm progression in Marfan syndrome mice. Science 332, 358–361 (2011).

    Article  CAS  Google Scholar 

  55. Habashi, J. P. et al. Losartan, an AT1 antagonist, prevents aortic aneurysm in a mouse model of Marfan syndrome. Science 312, 117–121 (2006).

    Article  CAS  Google Scholar 

  56. Akhurst, R. J. & Hata, A. Targeting the TGFβ signalling pathway in disease. Nat. Rev. Drug Discov. 11, 790–811 (2012).

    Article  CAS  Google Scholar 

  57. Weedon, M. N. et al. A common variant of HMGA2 is associated with adult and childhood height in the general population. Nat. Genet. 39, 1245–1250 (2007).

    Article  CAS  Google Scholar 

  58. Zhou, X., Benson, K. F., Ashar, H. R. & Chada, K. Mutation responsible for the mouse pygmy phenotype in the developmentally regulated factor HMGI.-C. Nature 376, 771–774 (1995).

    Article  CAS  Google Scholar 

  59. Gudbjartsson, D. F. et al. Many sequence variants affecting diversity of adult human height. Nat. Genet. 40, 609–615 (2008).

    Article  CAS  Google Scholar 

  60. Lettre, G. et al. Identification of ten loci associated with height highlights new biological pathways in human growth. Nat. Genet. 40, 584–591 (2008).

    Article  CAS  Google Scholar 

  61. Weedon, M. N. et al. Genome-wide association analysis identifies 20 loci that influence adult height. Nat. Genet. 40, 575–583 (2008).

    Article  CAS  Google Scholar 

  62. Sanna, S. et al. Common variants in the GDF5-UQCC region are associated with variation in human height. Nat. Genet. 40, 198–203 (2008).

    Article  CAS  Google Scholar 

  63. Estrada, K. et al. A genome-wide association study of northwestern Europeans involves the C-type natriuretic peptide signaling pathway in the etiology of human height variation. Hum. Mol. Genet. 18, 3516–3524 (2009).

    Article  CAS  Google Scholar 

  64. Soranzo, N. et al. Meta-analysis of genome-wide scans for human adult stature identifies novel Loci and associations with measures of skeletal frame size. PLoS Genet. 5, e1000445 (2009).

    Article  Google Scholar 

  65. Johansson, A. et al. Common variants in the JAZF1 gene associated with height identified by linkage and genome-wide association analysis. Hum. Mol. Genet. 18, 373–380 (2009).

    Article  CAS  Google Scholar 

  66. Kim, J. J. et al. Identification of 15 loci influencing height in a Korean population. J. Hum. Genet. 55, 27–31 (2010).

    Article  Google Scholar 

  67. Okada, Y. et al. A genome-wide association study in 19 633 Japanese subjects identified LHX3-QSOX2 and IGF1 as adult height loci. Hum. Mol. Genet. 19, 2303–2312 (2010).

    Article  CAS  Google Scholar 

  68. Cho, Y. S. et al. A large-scale genome-wide association study of Asian populations uncovers genetic factors influencing eight quantitative traits. Nat. Genet. 41, 527–534 (2009).

    Article  CAS  Google Scholar 

  69. Yang, J. et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. Nat. Genet. 44, 369–375 (2012).

    Article  CAS  Google Scholar 

  70. Lanktree, M. B. et al. Meta-analysis of dense genecentric association studies reveals common and uncommon variants associated with height. Am. J. Hum. Genet. 88, 6–18 (2011).

    Article  CAS  Google Scholar 

  71. Gibson, G. Rare and common variants: twenty arguments. Nat. Rev. Genet. 13, 135–145 (2012).

    Article  CAS  Google Scholar 

  72. Alkan, C., Coe, B. P. & Eichler, E. E. Genome structural variation discovery and genotyping. Nat. Rev. Genet. 12, 363–376 (2011).

    Article  CAS  Google Scholar 

  73. Dauber, A. et al. Genome-wide association of copy-number variation reveals an association between short stature and the presence of low-frequency genomic deletions. Am. J. Hum. Genet. 89, 751–759 (2011).

    Article  CAS  Google Scholar 

  74. Pinto, D. et al. Functional impact of global rare copy number variation in autism spectrum disorders. Nature 466, 368–372 (2010).

    Article  CAS  Google Scholar 

  75. International Schizophrenia Consortium. Rare chromosomal deletions and duplications increase risk of schizophrenia. Nature 455, 237–241 (2008).

  76. Zuk, O., Hechter, E., Sunyaev, S. R. & Lander, E. S. The mystery of missing heritability: Genetic interactions create phantom heritability. Proc. Natl Acad. Sci. USA 109, 1193–1198 (2012).

    Article  CAS  Google Scholar 

  77. Yang, J. et al. Genome partitioning of genetic variation for complex traits using common SNPs. Nat. Genet. 43, 519–525 (2011).

    Article  CAS  Google Scholar 

  78. Slatkin, M. Epigenetic inheritance and the missing heritability problem. Genetics 182, 845–850 (2009).

    Article  Google Scholar 

  79. Weinstein, M., Xu, X., Ohyama, K. & Deng, C. X. FGFR-3 and FGFR-4 function cooperatively to direct alveogenesis in the murine lung. Development 125, 3615–3623 (1998).

    CAS  PubMed  Google Scholar 

  80. Lettre, G. Recent progress in the study of the genetics of height. Hum. Genet. 129, 465–472 (2011).

    Article  Google Scholar 

  81. Chan, Y. et al. Common variants show predicted polygenic effects on height in the tails of the distribution, except in extremely short individuals. PLoS Genet. 7, e1002439 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J.-M. Wit, P. Propping, H. Cooke, W. Blum and C. Haley for discussion on the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed to all aspects of the article.

Corresponding author

Correspondence to Gudrun A. Rappold.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Table 1

List of genes identified in the OMIM database using the keyword overgrowth, in alphabetical order. (DOC 76 kb)

Supplementary Table 2

List of genes identified in the OMIM database using the keyword short stature, in alphabetical order. (DOC 481 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Durand, C., Rappold, G. Height matters—from monogenic disorders to normal variation. Nat Rev Endocrinol 9, 171–177 (2013). https://doi.org/10.1038/nrendo.2012.251

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2012.251

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing