Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Building drug delivery into tissue engineering design

Key Points

  • The engineering of many tissue structures, such as the branching architectures that are found in many tissues, or the intricate network architecture of the nervous system, will require new methods for producing controlled spatial and temporal gradients of agents in developing tissues.

  • Controlled-release technology has many direct applications to tissue engineering; for example, local delivery of growth factors can be accomplished by encapsulating the agent within a biocompatible polymer matrix or microsphere.

  • Controlled growth-factor delivery systems can also be used in conjugation with biocompatible matrices or porous scaffolds that provide morphological guides for the assembly of regenerating tissue within a controllable microenvironment.

  • Microfluidic devices, which are composed of networks of interconnected channels, pumps, valves, mixers and separators, will be useful in developing new tools for drug delivery and tissue engineering, including the microfluidic control of cell positioning and local agent delivery.

  • In tissue engineering, the transformation of a neotissue into a functional replacement tissue occurs in a series of steps, in which each step potentially involves different biological signals that can be introduced by controlled delivery methods.

  • Modelling the dynamics of agent diffusion and convection at local tissue sites will be an essential tool for developing new delivery systems that provide spatial and temporal control over agent delivery.

Abstract

The creation of efficient methods for manufacturing biotechnology drugs — many of which influence fundamental but complex cell behaviours, such as proliferation, migration and differentiation — is creating new opportunities for tissue repair. Many agents are potent and multifunctional; that is, they produce different effects within different tissues. Therefore, control of tissue concentration and spatial localization of delivery is essential for safety and effectiveness. Synthetic systems that can control agent delivery are particularly promising as materials for enhancing tissue regeneration. This review discusses the state of the art in controlled-release and microfluidic drug delivery technologies, and outlines their potential applications for tissue engineering.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Methods for controlled delivery of agents into localized regions of tissue.
Figure 2: Surface gradients of agents.
Figure 3: Dynamics of NGF delivery to a localized region of tissue.
Figure 4: Concentration gradients produced by controlled-release systems.
Figure 5: Flow in a microfluidic channel.
Figure 6: Penetration of agents that are delivered by diffusion or convection.

Similar content being viewed by others

References

  1. Langer, R. & Vacanti, J. P. Tissue engineering. Science 260, 920–932 (1993).This influential review provided an organizational framework for the field of tissue engineering.

    Article  CAS  PubMed  Google Scholar 

  2. Singer, A. J. & Clark, R. A. F. Cutaneous wound healing. New Engl. J. Med. 341, 738–746 (1999).

    CAS  PubMed  Google Scholar 

  3. Black, A. F., Berthod, F., L'Heureux, N., Germain, L. & Auger, F. A. In vitro reconstruction of a human capillary-like network in a tissue-engineered skin equivalent. FASEB J. 12, 1331–1340 (1998).

    CAS  PubMed  Google Scholar 

  4. Wolpert, L. Positional information and pattern formation. Curr. Top. Dev. Biol. 6, 183–224 (1971).

    CAS  PubMed  Google Scholar 

  5. Gurdon, J. B. & Bourillot, P.-Y. Morphogen gradient interpretation. Nature 413, 797–803 (2001).

    CAS  PubMed  Google Scholar 

  6. Peppas, N. A. & Langer, R. New challenges in biomaterials. Science 263, 1715–1720 (1994).

    CAS  PubMed  Google Scholar 

  7. Ratner, B., Hoffman, A., Schoen, F. & Lemons, J. (eds) Biomaterials Science: an Introduction to Materials in Medicine (Academic, San Diego, 1996).

    Google Scholar 

  8. Saltzman, W. M. Drug Delivery: Engineering Principles for Drug Therapy (Oxford Univ. Press, New York, 2001).

    Google Scholar 

  9. Hoffman, D., Wahlberg, L. & Aebischer, P. NGF released from a polymer matrix prevents loss of ChAT expression in basal forebrain neurons following a fimbria–fornix lesion. Exp. Neurol. 110, 39–44 (1990).

    CAS  PubMed  Google Scholar 

  10. Mahoney, M. J. & Saltzman, W. M. Transplantation of brain cells assembled around a programmable synthetic microenvironment. Nature Biotechnol. 19, 934–939 (2001).

    CAS  Google Scholar 

  11. Craig, C. G. et al. In vivo growth factor expansion of endogenous subependymal neural precursor cell populations in the adult mouse brain. J. Neurosci. 16, 2649–2658 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Brown, L., Siemer, L., Munoz, C., Edelman, E. & Langer, R. Controlled release of insulin from polymer matrices: control of diabetes in rats. Diabetes 35, 692–697 (1986).

    CAS  PubMed  Google Scholar 

  13. Edelman, E. R., Mathiowitz, E., Langer, R. & Klagsbrun, M. Controlled and modulated release of basic fibroblast growth factor. Biomaterials 12, 619–626 (1991).

    CAS  PubMed  Google Scholar 

  14. Murray, J., Brown, L., Langer, R. & Klagsburn, M. A micro sustained release system for epidermal growth factor. In Vitro 19, 743–748 (1983).References 13 and 14 are early examples of methods for the controlled release of growth factors, and discuss approaches for overcoming some of the difficulties that are inherent to growth-factor delivery.

    CAS  PubMed  Google Scholar 

  15. Krewson, C. E., Klarman, M. & Saltzman, W. M. Distribution of nerve growth factor following direct delivery to brain interstitium. Brain Res. 680, 196–206 (1995).The first paper to measure the gradient of agent concentration that results from localized, controlled release of an agent.

    CAS  PubMed  Google Scholar 

  16. Saltzman, W. M. & Langer, R. Transport rates of proteins in porous polymers with known microgeometry. Biophys. J. 55, 163–171 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Radomsky, M. L., Whaley, K. J., Cone, R. A. & Saltzman, W. M. Controlled vaginal delivery of antibodies in the mouse. Biol. Reprod. 47, 133–140 (1992).

    CAS  PubMed  Google Scholar 

  18. Saltzman, W. M. Antibodies for treating and preventing disease: the potential role of polymeric controlled release. Crit. Rev. Ther. Drug Carrier Syst. 10, 111–142 (1993).

    CAS  PubMed  Google Scholar 

  19. Sherwood, J. K., Zeitlin, L., Whaley, K. J., Cone, R. A. & Saltzman, W. M. Controlled release of antibodies for sustained topical passive immunoprotection of female mice against genital herpes. Nature Biotechnol. 14, 468–471 (1996).

    CAS  Google Scholar 

  20. Pries, I. & Langer, R. A single-step immunization by sustained antigen release. J. Immunol. Methods 28, 193–197 (1979).

    Google Scholar 

  21. Wyatt, T. L., Whaley, K. J., Cone, R. A. & Saltzman, W. M. Antigen-releasing polymer rings and microspheres stimulate mucosal immunity in the vagina. J. Control. Release 50, 93–102 (1998).

    CAS  PubMed  Google Scholar 

  22. Luo, D., Woodrow-Mumford, K., Belcheva, N. & Saltzman, W. M. Controlled DNA delivery systems. Pharm. Res. 16, 1300–1308 (1999).

    CAS  PubMed  Google Scholar 

  23. Camarata, P. J., Suryanarayanan, R. & Turner, D. A. Sustained release of nerve growth factor from biodegradable polymer microspheres. Neurosurgery 30, 313–319 (1992).

    CAS  PubMed  Google Scholar 

  24. Krewson, C. E., Dause, R. B., Mak, M. W. & Saltzman, W. M. Stabilization of nerve growth factor in polymers and in tissues. J. Biomater. Sci. 8, 103–117 (1996).

    CAS  Google Scholar 

  25. Gombotz, W. R., Pankey, S. C., Bouchard, L. S., Ranchalis, J. & Puolakkainen, P. Controlled release of TGF-β1 from a biodegradable matrix for bone regeneration. J. Biomater. Sci. Polym. Edn 5, 49–63 (1993).

    CAS  Google Scholar 

  26. Johnson, O. L. et al. A month-long effect from a single injection of microencapsulated human growth hormone. Nature Med. 2, 795–799 (1996).

    CAS  PubMed  Google Scholar 

  27. Mathiowitz, E., Saltzman, W. M., Domb, A., Dor, P. & Langer, R. Polyanhydride microspheres as drug carriers. II. Microencapsulation by solvent removal. J. Appl. Polym. Sci. 35, 755–774 (1988).

    CAS  Google Scholar 

  28. Sherwood, J. K., Dause, R. B. & Saltzman, W. M. Controlled antibody delivery systems. Bio/Technology 10, 1446–1449 (1992).

    CAS  Google Scholar 

  29. Cleland, J. L. in Vaccine Design: the Subunit and Adjuvant Approach (eds Powell, M. F. & Newman, M. J.) 439–462 (Plenum, New York, 1995).

    Google Scholar 

  30. Marx, P. A. et al. Protection against vaginal SIV transmission with microencapsulated vaccine. Science 260, 1323–1327 (1993).

    CAS  PubMed  Google Scholar 

  31. Whittum-Hudson, J. A., Prendergast, R. A., Saltzman, W. M., An, L. L. & MacDonald, A. B. Oral immunization with an anti-idiotypic antibody to the exolipid antigen protects against experimental Chlamydia trachomatis infection. Nature Med. 2, 1116–1121 (1996).

    CAS  PubMed  Google Scholar 

  32. Shea, L. D., Smiley, E., Bonadio, J. & Mooney, D. J. DNA delivery from polymer matrices for tissue engineering. Nature Biotechnol. 17, 551–554 (1999). The paper describes a method for combining a tissue engineering scaffold with the controlled release of DNA.

    CAS  Google Scholar 

  33. Puolakkainen, P. A. et al. The enhancement in wound healing by transforming growth factor-β1 depends on the topical delivery system. J. Surg. Res. 58, 321–329 (1995).

    CAS  PubMed  Google Scholar 

  34. Hill-West, J. L., Dunn, R. C. & Hubbell, J. A. Local release of fibrinolytic agents for adhesion prevention. J. Surg. Res. 59, 759–763 (1995).

    CAS  PubMed  Google Scholar 

  35. Richardson, T. P., Peters, M. C., Ennett, A. B. & Mooney, D. J. Polymeric system for dual growth factor delivery. Nature Biotechnol. 19, 1029–1034 (2001).

    CAS  Google Scholar 

  36. Hubbell, J. A. Biomaterials in tissue engineering. Bio/Technology 13, 565–576 (1995).

    CAS  Google Scholar 

  37. Baldwin, S. P. & Saltzman, W. M. Polymers for tissue engineering. Trends Polym. Sci. 4, 177–182 (1996).

    CAS  Google Scholar 

  38. Freed, L. et al. Neocartilage formation in vitro and in vivo using cells cultured on synthetic biodegradable polymers. J. Biomed. Mater. Res. 27, 11–23 (1993).

    CAS  PubMed  Google Scholar 

  39. Vacanti, C. A., Langer, R., Schloo, B. & Vacanti, J. P. Synthetic polymers seeded with chondrocytes provide a template for new cartilage formation. Plast. Reconstr. Surg. 88, 753–759 (1991).

    CAS  PubMed  Google Scholar 

  40. Uyama, S., Kaufman, P. M., Takeda, T. & Vacanti, J. P. Delivery of whole liver-equivalent hepatocyte mass using polymer devices and hepatotrophic stimulation. Transplantation 55, 932–935 (1993).

    CAS  PubMed  Google Scholar 

  41. Lo, H., Ponticello, M. & Leong, K. Fabrication of controlled release biodegradable foams by phase separation. Tissue Eng. 1, 15 (1995).

    CAS  PubMed  Google Scholar 

  42. Mann, B. K., Gobin, A. S., Tsai, A. T., Schmedlen, R. H. & West, J. L. Smooth muscle cell growth in photopolymerized hydrogels with cell adhesive and proteolytically degradable domains: synthetic ECM analogs for tissue engineering. Biomaterials 22, 3045–3051 (2001).

    CAS  PubMed  Google Scholar 

  43. Carbonetto, S. T., Gruver, M. M. & Turner, D. C. Nerve fiber growth on defined hydrogel substrates. Science 216, 897–899 (1982).

    CAS  PubMed  Google Scholar 

  44. Mann, B. K., Schmedlen, R. H. & West, J. L. Tethered-TGF-β increases extracellular matrix production of vascular smooth muscle cells. Biomaterials 22, 439–444 (2001).

    CAS  PubMed  Google Scholar 

  45. Kuhl, P. R. & Griffith, L. G. Tethered epidermal growth factor as a paradigm of growth factor-induced stimulation from the solid phase. Nature Med. 2, 1022–1027 (1996).This paper shows the biological activity of a soluble growth factor after chemical immobilization to a substrate.

    CAS  PubMed  Google Scholar 

  46. Belcheva, N. B., Woodrow-Mumford, K., Mahoney, M. J. & Saltzman, W. M. Synthesis and characterization of polyethylene glycol–mouse nerve growth factor conjugates. Bioconjug. Chem. 6, 932–937 (1999).

    Google Scholar 

  47. Knusli, C., Delgado, C., Malik, F. & Francis, G. E. Br. J. Haematol. 82, 654 (1982).

    Google Scholar 

  48. Bentz, H., Schroeder, J. H. & Estridge, T. D. Improved local delivery of TGF-β2 by binding to injectable fibrillar collagen via difunctional polyethylene glycol. J. Biomed. Mater. Res. 39, 539–548 (1998).

    CAS  PubMed  Google Scholar 

  49. Sakiyama-Elbert, S. E. & Hubbell, J. A. Controlled release of nerve growth factor from a heparin-containing fibrin-based cell ingrowth matrix. J. Control. Release 69, 149–158 (2000).

    CAS  PubMed  Google Scholar 

  50. Sakiyama-Elbert, S. E., Panitch, A. & Hubbell, J. A. Development of growth factor fusion proteins for cell-triggered drug delivery. FASEB J. 15, 1300–1302 (2001).An example of the synthesis of materials that will release factors in response to cellular activity.

    CAS  PubMed  Google Scholar 

  51. Dario, P., Carrozza, M. C., Benvenuto, A. & Menciassi, A. Micro–Systems in biomedical applications. J. Micromech. Microeng. 10, 235–244 (2000).

    CAS  Google Scholar 

  52. Whitesides, G. M. & Stroock, A. D. Flexible methods for microfluidics. Physics Today 54, 42–46 (2001).This paper describes the essential components of a microfluidic system, reviews the basic physics that underlie flow in microfluidic devices, and discusses some technological applications that are under development.

    CAS  Google Scholar 

  53. Paul, P. H., Garguilo, M. G. & Rakestraw, D. J. Imaging of pressure- and electrokinetically driven flows through open capillaries. Anal. Chem. 70, 2459–2467 (1998).

    CAS  PubMed  Google Scholar 

  54. Paul, P. H., Arnold, D. W., Neyer, D. W. & Smith, K. B. in Micro Total Analysis Systems 2000 (eds Van den Berg, A., Olthius, W. & Bergveld, P.) 583–590 (Kluwer Academic, The Netherlands, 2000).

    Google Scholar 

  55. Quake, S. R. & Scherer, A. From micro- to nanofabrication with soft materials. Science 290, 1536–1540 (2000).

    CAS  PubMed  Google Scholar 

  56. Hammarback, J. A., Palm, S. L., Furcht, L. T. & Letourneau, P. C. Guidance of neurite outgrowth by pathways of substratum-adsorbed laminin. J. Neurosci. Res. 13, 213–220 (1985).

    CAS  PubMed  Google Scholar 

  57. Folch, A. & Toner, M. Microengineering of cellular interactions. Annu. Rev. Biomed. Eng. 2, 227–256 (2000).

    CAS  PubMed  Google Scholar 

  58. Takayama, S. et al. Patterning cells and their environments using multiple laminar fluid flows in capillary networks. Proc. Natl Acad. Sci. 96, 5545–5548 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Chiu, D. T. et al. Patterned deposition of cells and proteins onto surfaces by using three-dimensional microfluidic systems. Proc. Natl Acad. Sci. 97, 2408–2413 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Thorsen, T., Roberts, R. W., Arnold, F. H. & Quake, S. R. Dynamic pattern formation in a vesicle-generating microfluidic device. Phys. Rev. Lett. 86, 4163–4166 (2001).

    CAS  PubMed  Google Scholar 

  61. McAllister, D. V., Allen, M. G. & Prausnitz, M. R. Microfabricated microneedles for gene and drug delivery. Annu. Rev. Biomed. Eng. 2, 289–313 (2000).This paper reviews the current state of the art in fabricating microneedles and microneedle arrays that use forced convection in microfluidic channels to infuse drugs and other compounds to tissue.

    CAS  PubMed  Google Scholar 

  62. Chun, K., Hashiguchi, G., Toshiyoshi, H. & Fujita, H. Fabrication of array of hollow microcapillaries used for injection of genetic materials into animal/plant cells. Jpn. J. Appl. Phys. 38, 279–281 (1999).

    Google Scholar 

  63. Chen, J. & Wise, K. D. A multichannel neural probe for selection chemical delivery at the cellular level. IEEE Trans. Biomed. Eng. 44, 760–769 (1997).

    CAS  PubMed  Google Scholar 

  64. Brazzle, J. D., Paputsky, I. & Frazier, A. B. Fluid-coupled hollow metalic micromachined needle arrays. Proc. SPIE Conf. Microfluidic Dev. Syst. 3515, 116–124 (1998).

    Google Scholar 

  65. Brazzle, J. D., Mohanty, S. & Frazier, A. B. Hollow metallic micromachined needles with multiple output ports. Proc. SPIE Conf. Microfluidic Dev. Syst. 3877, 257–266 (1999).

    Google Scholar 

  66. Santini, J. T., Richards, A. C., Scheidt, R., Cima, M. J. & Langer, R. Microchips as controlled drug-delivery devices. Angew. Chem. Int. Edn Engl. 39, 2396–2407 (2000).

    CAS  Google Scholar 

  67. Fukuchi-Shimogori, T. & Grove, E. A. Neocortex patterning by the secreted signaling molecule FGF8. Science 294, 1071–1074 (2001).

    CAS  PubMed  Google Scholar 

  68. Farinas, I. et al. Spatial shaping of cochlear innervation by temporally regulated neurotrophin expression. J. Neurosci. 21, 6170–6180 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Carmeliet, P. & Jain, R. K. Angiogenesis in cancer and other diseases. Nature 407, 249–257 (2000).

    CAS  PubMed  Google Scholar 

  70. Radomsky, M. L., Whaley, K. J., Cone, R. A. & Saltzman, W. M. Macromolecules released from polymers: diffusion into unstirred fluids. Biomaterials 11, 619–624 (1990).

    CAS  PubMed  Google Scholar 

  71. Beaty, C. E. & Saltzman, W. M. Controlled growth factor delivery induces differental neurite outgrowth in three-dimensional cell cultures. J. Control. Release 24, 15–23 (1993).

    CAS  Google Scholar 

  72. Driever, W. & Nusslein-Volhard, C. A gradient of Bicoid protein in Drosophila embryos. Cell 54, 83–93 (1988).

    CAS  PubMed  Google Scholar 

  73. Krewson, C. E. & Saltzman, W. M. Transport and elimination of recombinant human NGF during long-term delivery to the brain. Brain Res. 727, 169–181 (1996).

    CAS  PubMed  Google Scholar 

  74. Mahoney, M. J. & Saltzman, W. M. Millimeter-scale positioning of a nerve-growth-factor source and biological activity in the brain. Proc. Natl Acad. Sci. USA 96, 4536–4539 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Mak, M., Fung, L., Strasser, J. F. & Saltzman, W. M. Distribution of drugs following controlled delivery to the brain interstitium. J. of Neurooncol. 26, 91–102 (1995).

    CAS  Google Scholar 

  76. Kuo, P. Y., Sherwood, J. K. & Saltzman, W. M. Topical antibody delivery systems produce sustained levels in mucosal tissues and blood. Nature Biotechnol. 16, 163–167 (1998).

    CAS  Google Scholar 

  77. Mahoney, M. J. & Saltzman, W. M. Controlled release of proteins to tissue transplants for the treatment of neurodegenerative disorders. J. Pharm. Sci. 85, 1276–1281 (1996).

    CAS  PubMed  Google Scholar 

  78. Morrison, P. F., Laske, D. W., Bobo, H., Oldfield, E. H. & Dedrick, R. L. High-flow microinfusion: tissue penetration and pharmacodynamics. Am. J. Physiol. 266, R292–R305 (1994).This paper presents a comprehensive mathematical model of macromolecule transport in tissue when convection, diffusion and biochemical degradation are important.

  79. Lonser, R. R., Weil, R. J., Morrison, P. F., Governale, L. S. & Oldfield, E. H. Direct convection delivery of macromolecules to peripheral nerves. J. Neurosurg. 89, 610–615 (1998).

    CAS  PubMed  Google Scholar 

  80. Lonser, R. R. et al. Direct convective delivery of macromolecules to the spinal cord. J. Neurosurg. 89, 612–622 (1998).

    Google Scholar 

  81. Hewitt, C. W. & Black, K. S. Overview of a 10-year experience on methods and compositions for inducing site-specific immunosuppression with topical immunosuppressants. Transplant. Proc. 28, 922–923 (1996).

    CAS  PubMed  Google Scholar 

  82. McArthur, J. C. et al. A Phase II trial of nerve growth factor for sensory neuropathy associated with HIV infection. Neurology 54, 1080–1088 (2000).

    CAS  PubMed  Google Scholar 

  83. Lambiase, A., Rama, P., Bonini, S., Caprioglio, G. & Aloe, L. Topical treatment with nerve growth factor for corneal neurotrophic ulcers. New Engl. J. Med. 338, 1174–1180 (1998).

    CAS  PubMed  Google Scholar 

  84. Saltzman, W. M. & Radomsky, M. L. Drugs released from polymers: diffusion and elimination in brain tissue. Chem. Eng. Sci. 46, 2429–2444 (1991).

    CAS  Google Scholar 

  85. Nor, J. E. et al. Engineering and characterization of functional microvessels in immunodeficient mice. Lab. Invest. 81, 453–463 (2001).

    CAS  PubMed  Google Scholar 

  86. Yamashita, J. et al. Flk1-positive cells derived from embryonic stem cells serve as vascular progenitors. Nature 408, 92–96 (2000).

    CAS  PubMed  Google Scholar 

  87. Schechner, J. S. et al. In vivo formation of complex microvessels lined by human endothelial cells in an immunodeficient mouse. Proc. Natl Acad. Sci. USA 97, 9191–9196 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Saito, N. et al. A biodegradable polymer as a cytokine delivery system for inducing bone formation. Nature Biotechnol. 19, 332–335 (2001).

    CAS  Google Scholar 

  89. Kale, S. et al. Three-dimensional cellular development is essential for ex vivo formation of human bone. Nature Biotechnol. 18, 954–958 (2000).

    CAS  Google Scholar 

  90. Hunziker, E. B. Growth-factor-induced healing of partial-thickness defects in adult articular cartilage. Osteoarthritis Cartilage 9, 22–32 (2001).

    CAS  PubMed  Google Scholar 

  91. Schense, J. C., Bloch, J., Aebischer, P. & Hubbell, J. A. Enzymatic incorporation of bioactive peptides into fibrin matrices enhances neurite extension. Nature Biotechnol. 18, 415–419 (2000).

    CAS  Google Scholar 

  92. Poznansky, M. C. et al. Efficient generation of human T cells from a tissue-engineered thymic organoid. Nature Biotechnol. 18, 729–734 (2000).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Isaacson, S. Retterer and A. Spence for helpful discussions and for providing images. Our work on NGF delivery system is supported by the National Institutes for Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Mark Saltzman.

Related links

Related links

DATABASES

LocusLink

BDNF

rhBMP2

EGF

FGF2

FGF8

β-glucuronidase

NGF

NT3

PDGF

TGF-β

VEGF

 Medscape DrugInfo

cyclosporine

FURTHER INFORMATION

FDA

Glossary

NEOTISSUE

An assembly of cellular, protein and synthetic elements, in which the various components are physically arranged to encourage development into a functional replacement tissue.

CHONDROCYTE

A cartilage cell.

MORPHOGEN

A biological agent, often a protein, that influences a change in cell behaviour.

NORPLANT

A cylindrical silicone implant loaded with contraceptive steriods, which provides constant steroid release for up to five years.

GLIADEL

This consists of biodegradable wafers of polyanhydride loaded with a chemotherapy drug, which can be implanted in the brain for local, controlled release at a tumour re-section site.

ELECTRO-OSMOSIS

The motion of a liquid, relative to a stationary charged surface, which is induced by an applied electric field.

PIEZOELECTRIC

A property of certain materials — for example, quartz — that produces a physical deformation that is proportional to an applied potential difference.

ELECTROKINETIC

This describes various phenomena that involve the motion of fluids that contain charged particles or ions in electric fields.

OHMIC HEATING

The generation of heat due to the passage of an electrical current through a medium with electrical resistance.

REYNOLDS NUMBER

A dimensionless number, the value of which estimates the relative importance of inertial forces compared with viscous forces in flowing fluids.

ANISOTROPIC ETCHING

An etching process that exploits the crystalline structure of certain materials, such as silicon, to etch at different rates in different directions.

BICOID PROTEIN

A transcription-factor protein that is produced in Drosophila melanogaster by a maternal-effect gene; messenger RNA from the maternal gene is segregated to the anterior pole of the developing egg, resulting in spatially localized synthesis of Bicoid protein.

PHARMACOTECTONIC

This describes techniques that allow control of the spatial positioning of agents in a tissue or organ.

DARCY'S LAW

An empirical statement that the volumetric flow rate in a porous medium is linearly proportional to the applied pressure gradient.

PECLET NUMBER

A dimensionless number, the value of which estimates the relative importance of mass transfer by convection compared with mass transfer by diffusion.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saltzman, W., Olbricht, W. Building drug delivery into tissue engineering design. Nat Rev Drug Discov 1, 177–186 (2002). https://doi.org/10.1038/nrd744

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd744

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing