Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Intra-arterial brachytherapy of hepatic malignancies: watch the flow

Abstract

Although the liver possesses a dual blood supply, arterial vessels deliver only a small proportion of blood to normal parenchyma, but they deliver the vast majority of blood to primary and secondary cancers of the liver. This anatomical discrepancy is the basis for intra-arterial brachytherapy of liver cancers using radioactive microspheres, termed radio-embolization (RE). Radioactive microspheres implant preferentially in the terminal arterioles of tumors. Although biological models of the flow dynamics and distribution of microspheres are currently in development, there is a need to improve the imaging biomarkers of flow dynamics used to plan RE. Since a direct consequence of RE is vascular disruption and necrosis, we suggest that imaging protocols sensitive to changes in vasculature are highly likely to represent useful early biomarkers for treatment efficacy. We propose dynamic contrast-enhanced CT as the most appropriate imaging modality for studying vascular parameters in clinical trials of RE treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Macro aggregated albumin scan.
Figure 2: Geometry of microspheres relative to the hepatic arterial system.
Figure 3: Changes in tumor perfusion detected by DCE-CT.
Figure 4: DW-MRI artifacts that make image interpretation difficult.

Similar content being viewed by others

References

  1. Kennedy, A. et al. Recommendations for radioembolization of hepatic malignancies using yttrium-90 microsphere brachytherapy: a consensus panel report from the radioembolization brachytherapy oncology consortium. Int. J. Radiat. Oncol. Biol. Phys. 68, 13–23 (2007).

    Article  Google Scholar 

  2. Kennedy, A. S., Nutting, C., Coldwell, D., Gaiser, J. & Drachenberg, C. Pathologic response and microdosimetry of (90)Y microspheres in man: review of four explanted whole livers. Int. J. Radiat. Oncol. Biol. Phys. 60, 1552–1563 (2004).

    Article  CAS  Google Scholar 

  3. Kennedy, A. S. et al. Treatment parameters and outcome in 680 treatments of internal radiation with resin 90Y-microspheres for unresectable hepatic tumors. Int. J. Radiat. Oncol. Biol. Phys. 74, 1494–1500 (2009).

    Article  CAS  Google Scholar 

  4. Nicolay, N. H., Berry, D. P. & Sharma, R. A. Liver metastases from colorectal cancer: radioembolization with systemic therapy. Nat. Rev. Clin. Oncol. 6, 687–697 (2009).

    Article  CAS  Google Scholar 

  5. Flamen, P. et al. Multimodality imaging can predict the metabolic response of unresectable colorectal liver metastases to radioembolization therapy with Yttrium-90 labeled resin microspheres. Phys. Med. Biol. 53, 6591–6603 (2008).

    Article  Google Scholar 

  6. Dhabuwala, A., Lamerton, P. & Stubbs, R. S. Relationship of 99mtechnetium labelled macroaggregated albumin (99mTc-MAA) uptake by colorectal liver metastases to response following Selective Internal Radiation Therapy (SIRT). BMC Nucl. Med. 5, 7 (2005).

    Article  Google Scholar 

  7. Dancey, J. E. et al. Treatment of nonresectable hepatocellular carcinoma with intrahepatic 90Y-microspheres. J. Nucl. Med. 41, 1673–1681 (2000).

    CAS  PubMed  Google Scholar 

  8. Kennedy, A. S., Kleinstreuer, C., Basciano, C. A. & Dezarn, W. A. Computer modeling of yttrium-90-microsphere transport in the hepatic arterial tree to improve clinical outcomes. Int. J. Radiat. Oncol. Biol. Phys. 1, 631–637 (2010).

    Article  Google Scholar 

  9. Hong, K., Georgiades, C. S. & Geschwind, J. F. Technology insight: Image-guided therapies for hepatocellular carcinoma--intra-arterial and ablative techniques. Nat. Clin. Pract. Oncol. 3, 315–324 (2006).

    Article  Google Scholar 

  10. Mabotuwana, T. D., Cheng, L. K. & Pullan, A. J. A model of blood flow in the mesenteric arterial system. Biomed. Eng. Online 6, 17 (2007).

    Article  Google Scholar 

  11. Basciano, C. A., Kleinstreuer, C., Kennedy, A. S., Dezarn, W. A. & Childress, E. Computer modeling of controlled microsphere release and targeting in a representative hepatic artery system. Ann. Biomed. Eng. 38, 1862–1879 (2010).

    Article  Google Scholar 

  12. Eisenhauer, E. A. et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur. J. Cancer 45, 228–247 (2009).

    Article  CAS  Google Scholar 

  13. Michaelis, L. C. & Ratain, M. J. Measuring response in a post-RECIST world: from black and white to shades of grey. Nat. Rev. Cancer 6, 409–414 (2006).

    Article  CAS  Google Scholar 

  14. Boppudi, S., Wickremesekera, S. K., Nowitz, M. & Stubbs, R. Evaluation of the role of CT in the assessment of response to selective internal radiation therapy in patients with colorectal liver metastases. Australas. Radiol. 50, 570–577 (2006).

    Article  CAS  Google Scholar 

  15. Gerstner, E. R., McNamara, M. B., Norden, A. D., Lafrankie, D. & Wen, P. Y. Effect of adding temozolomide to radiation therapy on the incidence of pseudo-progression. J. Neurooncol. 94, 97–101 (2009).

    Article  CAS  Google Scholar 

  16. Curley, S. A. et al. Radiofrequency ablation of unresectable primary and metastatic hepatic malignancies: results in 123 patients. Ann. Surg. 230, 1–8 (1999).

    Article  CAS  Google Scholar 

  17. Wolchok, J. D. et al. Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria. Clin. Cancer Res. 15, 7412–7420 (2009).

    Article  CAS  Google Scholar 

  18. Wong, C. Y., Salem, R., Raman, S., Gates, V. L. & Dworkin, H. J. Evaluating 90Y-glass microsphere treatment response of unresectable colorectal liver metastases by [18F]FDG PET: a comparison with CT or MRI. Eur. J. Nucl. Med. Mol. Imaging 29, 815–820 (2002).

    Article  CAS  Google Scholar 

  19. Marn, C. S. et al. Hepatic parenchymal changes after intraarterial Y-90 therapy: CT findings. Radiology 187, 125–128 (1993).

    Article  CAS  Google Scholar 

  20. Sharma, R. A. et al. Radioembolization of liver metastases from colorectal cancer using yttrium-90 microspheres with concomitant systemic oxaliplatin, fluorouracil, and leucovorin chemotherapy. J. Clin. Oncol. 25, 1099–1106 (2007).

    Article  CAS  Google Scholar 

  21. Sato, K. T. et al. The role of tumor vascularity in predicting survival after yttrium-90 radioembolization for liver metastases. J. Vasc. Interv. Radiol. 20, 1564–1569 (2009).

    Article  Google Scholar 

  22. Riaz, A. et al. Radiologic-pathologic correlation of hepatocellular carcinoma treated with internal radiation using yttrium-90 microspheres. Hepatology 49, 1185–1193 (2009).

    Article  Google Scholar 

  23. Miller, F. H. et al. Response of liver metastases after treatment with yttrium-90 microspheres: role of size, necrosis, and PET. AJR Am. J. Roentgenol. 188, 776–783 (2007).

    Article  Google Scholar 

  24. Keppke, A. L. et al. Imaging of hepatocellular carcinoma after treatment with yttrium-90 microspheres. AJR Am. J. Roentgenol. 188, 768–775 (2007).

    Article  Google Scholar 

  25. Choi, H. et al. CT evaluation of the response of gastrointestinal stromal tumors after imatinib mesylate treatment: a quantitative analysis correlated with FDG PET findings. AJR Am. J. Roentgenol. 183, 1619–1628 (2004).

    Article  Google Scholar 

  26. Tofts, P. S. et al. Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J. Magn. Reson. Imaging 10, 223–232 (1999).

    Article  CAS  Google Scholar 

  27. Eide, K. R. et al. DynaCT during EVAR--a comparison with multidetector CT. Eur. J. Vasc. Endovasc. Surg. 37, 23–30 (2009).

    Article  CAS  Google Scholar 

  28. Jeon, U. B. et al. Iodized oil uptake assessment with cone-beam CT in chemoembolization of small hepatocellular carcinomas. World J. Gastroenterol. 15, 5833–5837 (2009).

    Article  Google Scholar 

  29. Goh, V. & Padhani, A. R. Imaging tumor angiogenesis: functional assessment using MDCT or MRI? Abdom. Imaging 31, 194–199 (2006).

    Article  CAS  Google Scholar 

  30. Mitsuzaki, K. et al. CT appearance of hepatic tumors after microwave coagulation therapy. AJR Am. J. Roentgenol. 171, 1397–1403 (1998).

    Article  CAS  Google Scholar 

  31. Ohmoto, K., Tsuduki, M., Kunieda, T., Mitsui, Y. & Yamamoto, S. CT appearance of hepatic parenchymal changes after percutaneous microwave coagulation therapy for hepatocellular carcinoma. J. Comput. Assist. Tomogr. 24, 866–871 (2000).

    Article  CAS  Google Scholar 

  32. Szyszko, T. et al. Assessment of response to treatment of unresectable liver tumours with 90Y microspheres: value of FDG PET versus computed tomography. Nucl. Med. Commun. 28, 15–20 (2007).

    Article  Google Scholar 

  33. Wong, C. Y. et al. Reduction of metastatic load to liver after intraarterial hepatic yttrium-90 radioembolization as evaluated by [18F] fluorodeoxyglucose positron emission tomographic imaging. J. Vasc. Interv. Radiol. 16, 1101–1106 (2005).

    Article  Google Scholar 

  34. Zahra, M. A., Hollingsworth, K. G., Sala, E., Lomas, D. J. & Tan, L. T. Dynamic contrast-enhanced MRI as a predictor of tumour response to radiotherapy. Lancet Oncol. 8, 63–74 (2007).

    Article  Google Scholar 

  35. Hawighorst, H. et al. Angiogenic activity of cervical carcinoma: assessment by functional magnetic resonance imaging-based parameters and a histomorphological approach in correlation with disease outcome. Clin. Cancer Res. 4, 2305–2312 (1998).

    CAS  PubMed  Google Scholar 

  36. Campbell, A. M., Bailey, I. H. & Burton, M. A. Analysis of the distribution of intra-arterial microspheres in human liver following hepatic yttrium-90 microsphere therapy. Phys. Med. Biol. 45, 1023–1033 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The concepts presented in this article were developed at the Tryst of Radio-Embolization Brachytherapy Leading Experts (TREBLE) meeting held in Trinity College, Oxford on 26 October 2009. The authors wish to thank the TREBLE participants: Boris Vojnovic, John Primrose, Eli Glatstein, David Berry, Peter Gibbs, Denny Liggitt, David Liu, Marc Peeters and Bruno Sangro. R. A. Sharma is funded by the Higher Education Funding Council for England and the Bobby Moore Fund of Cancer Research UK. R. A. Sharma and B. Jones acknowledge the support of the NIHR Biomedical Research Centre, Oxford, UK.

Author information

Authors and Affiliations

Authors

Contributions

B. Morgan, A. S. Kennedy and R. A. Sharma contributed to the data research, discussion, writing and reviewing/editing of the manuscript. V. Lewington and B. Jones contributed to the discussion and writing of the manuscript.

Corresponding author

Correspondence to Ricky A. Sharma.

Ethics declarations

Competing interests

A. S. Kennedy declares he receives grant/research support, is on the Speaker's Bureau and is a Consultant for Sirtex Medical. R. A. Sharma declares he receives grant/research support and is on the Speaker's Bureau for Sirtex Medical. The other authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morgan, B., Kennedy, A., Lewington, V. et al. Intra-arterial brachytherapy of hepatic malignancies: watch the flow. Nat Rev Clin Oncol 8, 115–120 (2011). https://doi.org/10.1038/nrclinonc.2010.153

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2010.153

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing