Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Biomarkers of AAA progression. Part 1: extracellular matrix degeneration

Abstract

Abdominal aortic aneurysm (AAA) is an important health problem. Elective surgical treatment is recommended on the basis of an individual's risk of rupture, which is predicted by AAA diameter. However, the natural history of AAA differs between patients and a reliable and individual predictor of AAA progression (growth and expansion rates) has not been established. Several circulating biomarkers are candidates for an AAA diagnostic tool. However, they have yet to meet the triad of biomarker criteria: biological plausibility, correlation with AAA progression, and prediction of treatment effect on disease outcome. Circulating levels of markers of extracellular matrix degeneration, such as elastin peptides, aminoterminal propeptide of type III procollagen, elastase–α1-antitrypsin complexes, matrix metalloproteinase 9, cystatin C, plasmin–antiplasmin complexes and tissue plasminogen activator, have been correlated with AAA progression and have biological plausibility. Although studies of these markers have shown promising results, they have not yet led to a clinically applicable biomarker. In future studies, adjustment for initial AAA size, smoking history and the measurement error for determination of AAA size, among other variables, should be taken into account. A large, prospective, standardized, follow-up study will be needed to investigate multiple circulating biomarkers for their potential role in the prediction of AAA progression, followed by a study to investigate the effect of treatment on the circulating levels of biomarkers.

Key Points

  • Abdominal aortic aneurysm has complex pathophysiology

  • Progression of abdominal aortic aneurysm is influenced by many factors

  • The natural history of abdominal aortic aneurysm differs between individual patients

  • An ideal biomarker of abdominal aortic aneurysm progression should have a causal relationship to the disease and should be responsive to intervention

  • Circulating levels of markers of extracellular matrix degeneration (elastin peptides, PIIINP, elastase–A1AT complexes, MMP-9, cystatin C, PAPs and tPA) have biological plausibility and have been reported as potential biomarkers

  • There is a need for a prospective, standardized study to investigate a set of plausible biomarkers for prediction of abdominal aortic aneurysm progression

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Abdominal aortic aneurysm (AAA) histology.
Figure 2: Stages of aneurysmal disease.
Figure 3: Three major protease families.

Similar content being viewed by others

References

  1. van der Vliet, J. A. & Boll, A. P. Abdominal aortic aneurysm. Lancet 349, 863–866 (1997).

    CAS  PubMed  Google Scholar 

  2. Sakalihasan, N., Limet, R. & Defawe, O. D. Abdominal aortic aneurysm. Lancet 365, 1577–1589 (2005).

    CAS  PubMed  Google Scholar 

  3. Heller, J. A. et al. Two decades of abdominal aortic aneurysm repair: have we made any progress? J. Vasc. Surg. 32, 1091–1100 (2000).

    CAS  PubMed  Google Scholar 

  4. Blankensteijn, J. D. et al. Two-year outcomes after conventional or endovascular repair of abdominal aortic aneurysms. N. Engl. J. Med. 352, 2398–2405 (2005).

    CAS  PubMed  Google Scholar 

  5. The UK Small Aneurysm Trial Participants. Mortality results for randomised controlled trial of early elective surgery or ultrasonographic surveillance for small abdominal aortic aneurysms. The UK Small Aneurysm Trial Participants. Lancet 352, 1649–1655 (1998).

  6. Glimaker, H. et al. Natural history of patients with abdominal aortic aneurysm. Eur. J. Vasc. Surg. 5, 125–130 (1991).

    CAS  PubMed  Google Scholar 

  7. Kurvers, H. et al. Discontinuous, staccato growth of abdominal aortic aneurysms. J. Am. Coll. Surg. 199, 709–715 (2004).

    PubMed  Google Scholar 

  8. Fillinger, M. F. et al. Anatomic characteristics of ruptured abdominal aortic aneurysm on conventional CT scans: implications for rupture risk. J. Vasc. Surg. 39, 1243–1252 (2004).

    PubMed  Google Scholar 

  9. Fillinger, M. F., Marra, S. P., Raghavan, M. L. & Kennedy, F. E. Prediction of rupture risk in abdominal aortic aneurysm during observation: wall stress versus diameter. J. Vasc. Surg. 37, 724–732 (2003).

    PubMed  Google Scholar 

  10. Golledge, J., Tsao, P. S., Dalman, R. L. & Norman, P. E. Circulating markers of abdominal aortic aneurysm presence and progression. Circulation 118, 2382–2392 (2008).

    PubMed  PubMed Central  Google Scholar 

  11. Hellenthal, F. A., Geenen, I. L., Teijink, J. A., Heeneman, S. & Schurink, G. W. Histological features of human abdominal aortic aneurysm are not related to clinical characteristics. Cardiovasc. Pathol. doi:10.1016/jcarpath.2008.06.014 (2008).

  12. Shimizu, K., Shichiri, M., Libby, P., Lee, R. T. & Mitchell, R. N. Th2-predominant inflammation and blockade of IFN-gamma signaling induce aneurysms in allografted aortas. J. Clin. Invest. 114, 300–308 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Hellenthal, F. A., Buurman, W. A., Wodzig, W. K. & Schurink, G. W. Biomarkers of AAA progression. Part 2: inflammation. Nat. Rev. Cardiol. (in press).

  14. Fleming, T. R. & DeMets, D. L. Surrogate end points in clinical trials: are we being misled? Ann. Intern. Med. 125, 605–613 (1996).

    CAS  PubMed  Google Scholar 

  15. Tardif, J. C., Heinonen, T., Orloff, D. & Libby, P. Vascular biomarkers and surrogates in cardiovascular disease. Circulation 113, 2936–2942 (2006).

    PubMed  Google Scholar 

  16. Libby, P. & Lee, R. T. Matrix matters. Circulation 102, 1874–1876 (2000).

    CAS  PubMed  Google Scholar 

  17. Dobrin, P. B. & Mrkvicka, R. Failure of elastin or collagen as possible critical connective tissue alterations underlying aneurysmal dilatation. Cardiovasc. Surg. 2, 484–488 (1994).

    CAS  PubMed  Google Scholar 

  18. Campa, J. S., Greenhalgh, R. M. & Powell, J. T. Elastin degradation in abdominal aortic aneurysms. Atherosclerosis 65, 13–21 (1987).

    CAS  PubMed  Google Scholar 

  19. Davies, M. J. Aortic aneurysm formation: lessons from human studies and experimental models. Circulation 98, 193–195 (1998).

    CAS  PubMed  Google Scholar 

  20. Anidjar, S. et al. Elastase-induced experimental aneurysms in rats. Circulation 82, 973–981 (1990).

    CAS  PubMed  Google Scholar 

  21. Daugherty, A. & Cassis, L. A. Mouse models of abdominal aortic aneurysms. Arterioscler. Thromb. Vasc. Biol. 24, 429–434 (2004).

    CAS  PubMed  Google Scholar 

  22. Libby, P. Changing concepts of atherogenesis. J. Intern. Med. 247, 349–358 (2000).

    CAS  PubMed  Google Scholar 

  23. Holmes, D. R., Liao, S., Parks, W. C. & Thompson, R. W. Medial neovascularization in abdominal aortic aneurysms: a histopathologic marker of aneurysmal degeneration with pathophysiologic implications. J. Vasc. Surg. 21, 761–771 (1995).

    CAS  PubMed  Google Scholar 

  24. Abdul-Hussien, H. et al. Collagen degradation in the abdominal aneurysm: a conspiracy of matrix metalloproteinase and cysteine collagenases. Am. J. Pathol. 170, 809–817 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Jean-Claude, J., Newman, K. M., Li, H., Gregory, A. K. & Tilson, M. D. Possible key role for plasmin in the pathogenesis of abdominal aortic aneurysms. Surgery 116, 472–478 (1994).

    CAS  PubMed  Google Scholar 

  26. Farand, P., Garon, A. & Plante, G. E. Structure of large arteries: orientation of elastin in rabbit aortic internal elastic lamina and in the elastic lamellae of aortic media. Microvasc. Res. 73, 95–99 (2007).

    CAS  PubMed  Google Scholar 

  27. Robert, L., Jacob, M. P. & Fulop, T. Elastin in blood vessels. Ciba Found. Symp. 192, 286–299 (1995).

    CAS  PubMed  Google Scholar 

  28. Sans, M. & Moragas, A. Mathematical morphologic analysis of the aortic medial structure. Biomechanical implications. Anal. Quant. Cytol. Histol. 15, 93–100 (1993).

    CAS  PubMed  Google Scholar 

  29. Cohen, J. R., Mandell, C., Chang, J. B. & Wise, L. Elastin metabolism of the infrarenal aorta. J. Vasc. Surg. 7, 210–214 (1988).

    CAS  PubMed  Google Scholar 

  30. Cohen, J. R., Mandell, C., Margolis, I., Chang, J. & Wise, L. Altered aortic protease and antiprotease activity in patients with ruptured abdominal aortic aneurysms. Surg. Gynecol. Obstet. 164, 355–358 (1987).

    CAS  PubMed  Google Scholar 

  31. Baxter, B. T. et al. Abdominal aortic aneurysms are associated with altered matrix proteins of the nonaneurysmal aortic segments. J. Vasc. Surg. 19, 797–802; discussion 803 (1994).

    CAS  PubMed  Google Scholar 

  32. Brophy, C. M., Reilly, J. M., Smith, G. J. & Tilson, M. D. The role of inflammation in nonspecific abdominal aortic aneurysm disease. Ann. Vasc. Surg. 5, 229–233 (1991).

    CAS  PubMed  Google Scholar 

  33. Lindholt, J. S., Ashton, H. A., Heickendorff, L. & Scott, R. A. Serum elastin peptides in the preoperative evaluation of abdominal aortic aneurysms. Eur. J. Vasc. Endovasc. Surg. 22, 546–550 (2001).

    CAS  PubMed  Google Scholar 

  34. Wilson, K. A. et al. The relationship between abdominal aortic aneurysm distensibility and serum markers of elastin and collagen metabolism. Eur. J. Vasc. Endovasc. Surg. 21, 175–178 (2001).

    CAS  PubMed  Google Scholar 

  35. Lindholt, J. S., Vammen, S., Fasting, H., Henneberg, E. W. & Heickendorff, L. The plasma level of matrix metalloproteinase 9 may predict the natural history of small abdominal aortic aneurysms. A preliminary study. Eur. J. Vasc. Endovasc. Surg. 20, 281–285 (2000).

    CAS  PubMed  Google Scholar 

  36. Lindholt, J. S., Heickendorff, L., Henneberg, E. W. & Fasting, H. Serum-elastin-peptides as a predictor of expansion of small abdominal aortic aneurysms. Eur. J. Vasc. Endovasc Surg. 14, 12–16 (1997).

    CAS  PubMed  Google Scholar 

  37. Lindholt, J. S., Heickendorff, L., Vammen, S., Fasting, H. & Henneberg, E. W. Five-year results of elastin and collagen markers as predictive tools in the management of small abdominal aortic aneurysms. Eur. J. Vasc. Endovasc. Surg. 21, 235–240 (2001).

    CAS  PubMed  Google Scholar 

  38. Lindholt, J. S., Jorgensen, B., Fasting, H. & Henneberg, E. W. Plasma levels of plasmin-antiplasmin-complexes are predictive for small abdominal aortic aneurysms expanding to operation-recommendable sizes. J. Vasc. Surg. 34, 611–615 (2001).

    CAS  PubMed  Google Scholar 

  39. He, C. M. & Roach, M. R. The composition and mechanical properties of abdominal aortic aneurysms. J. Vasc. Surg. 20, 6–13 (1994).

    CAS  PubMed  Google Scholar 

  40. Dobrin, P. B., Baker, W. H. & Gley, W. C. Elastolytic and collagenolytic studies of arteries. Implications for the mechanical properties of aneurysms. Arch. Surg. 119, 405–409 (1984).

    CAS  PubMed  Google Scholar 

  41. Murata, K., Motayama, T. & Kotake, C. Collagen types in various layers of the human aorta and their changes with the atherosclerotic process. Atherosclerosis 60, 251–262 (1986).

    CAS  PubMed  Google Scholar 

  42. Thompson, R. W., Geraghty, P. J. & Lee, J. K. Abdominal aortic aneurysms: basic mechanisms and clinical implications. Curr. Probl. Surg. 39, 110–230 (2002).

    PubMed  Google Scholar 

  43. Satta, J., Haukipuro, K., Kairaluoma, M. I. & Juvonen, T. Aminoterminal propeptide of type III procollagen in the follow-up of patients with abdominal aortic aneurysms. J. Vasc. Surg. 25, 909–915 (1997).

    CAS  PubMed  Google Scholar 

  44. Melkko, J., Niemi, S., Risteli, L. & Risteli, J. Radioimmunoassay of the carboxyterminal propeptide of human type I procollagen. Clin. Chem. 36, 1328–1332 (1990).

    CAS  PubMed  Google Scholar 

  45. Satta, J., Juvonen, T., Haukipuro, K., Juvonen, M. & Kairaluoma, M. I. Increased turnover of collagen in abdominal aortic aneurysms, demonstrated by measuring the concentration of the aminoterminal propeptide of type III procollagen in peripheral and aortal blood samples. J. Vasc. Surg. 22, 155–160 (1995).

    CAS  PubMed  Google Scholar 

  46. Juvonen, J. et al. Elevated circulating levels of inflammatory cytokines in patients with abdominal aortic aneurysm. Arterioscler. Thromb. Vasc. Biol. 17, 2843–2847 (1997).

    CAS  PubMed  Google Scholar 

  47. Antonsen, S. & Wanscher, M. An ELISA for elastase alpha 1-protease inhibitor complexes in human plasma and serum. Scand. J. Clin. Lab. Invest. 53, 145–153 (1993).

    CAS  PubMed  Google Scholar 

  48. Colonnello, J. S. et al. Transient exposure to elastase induces mouse aortic wall smooth muscle cell production of MCP-1 and RANTES during development of experimental aortic aneurysm. J. Vasc. Surg. 38, 138–146 (2003).

    PubMed  Google Scholar 

  49. Chew, D. K., Orshal, J. M. & Khalil, R. A. Elastase promotes aortic dilation by inhibiting Ca2+ influx into vascular smooth muscle. J. Cardiovasc. Pharmacol. 43, 504–513 (2004).

    CAS  PubMed  Google Scholar 

  50. Vega de Ceniga, M. et al. Search for serum biomarkers associated with abdominal aortic aneurysm growth—a pilot study. Eur. J. Vasc. Endovasc. Surg. 37, 297–299 (2009).

    CAS  PubMed  Google Scholar 

  51. Lindholt, J. S., Jorgensen, B., Klitgaard, N. A. & Henneberg, E. W. Systemic levels of cotinine and elastase, but not pulmonary function, are associated with the progression of small abdominal aortic aneurysms. Eur. J. Vasc. Endovasc. Surg. 26, 418–422 (2003).

    CAS  PubMed  Google Scholar 

  52. Miller, F. J., Jr. Aortic aneurysms: it's all about the stress. Arterioscler. Thromb. Vasc Biol. 22, 1948–1949 (2002).

    CAS  PubMed  Google Scholar 

  53. Papadaki, M. et al. Differential regulation of protease activated receptor-1 and tissue plasminogen activator expression by shear stress in vascular smooth muscle cells. Circ. Res. 83, 1027–1034 (1998).

    CAS  PubMed  Google Scholar 

  54. Nelson, K. K. & Melendez, J. A. Mitochondrial redox control of matrix metalloproteinases. Free Radic. Biol. Med. 37, 768–784 (2004).

    CAS  PubMed  Google Scholar 

  55. Busuttil, R. W., Abou-Zamzam, A. M. & Machleder, H. I. Collagenase activity of the human aorta. A comparison of patients with and without abdominal aortic aneurysms. Arch. Surg. 115, 1373–1378 (1980).

    CAS  PubMed  Google Scholar 

  56. Irizarry, E. et al. Demonstration of interstitial collagenase in abdominal aortic aneurysm disease. J. Surg. Res. 54, 571–574 (1993).

    CAS  PubMed  Google Scholar 

  57. Newman, K. M. et al. Identification of matrix metalloproteinases 3 (stromelysin-1) and 9 (gelatinase B) in abdominal aortic aneurysm. Arterioscler. Thromb. 14, 1315–1320 (1994).

    CAS  PubMed  Google Scholar 

  58. Curci, J. A., Liao, S., Huffman, M. D., Shapiro, S. D. & Thompson, R. W. Expression and localization of macrophage elastase (matrix metalloproteinase-12) in abdominal aortic aneurysms. J. Clin. Invest. 102, 1900–1910 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Mao, D., Lee, J. K., VanVickle, S. J. & Thompson, R. W. Expression of collagenase-3 (MMP-13) in human abdominal aortic aneurysms and vascular smooth muscle cells in culture. Biochem. Biophys. Res. Commun. 261, 904–910 (1999).

    CAS  PubMed  Google Scholar 

  60. Freestone, T. et al. Inflammation and matrix metalloproteinases in the enlarging abdominal aortic aneurysm. Arterioscler. Thromb. Vasc. Biol. 15, 1145–1151 (1995).

    CAS  PubMed  Google Scholar 

  61. Wilson, W. R., Schwalbe, E. C., Jones, J. L., Bell, P. R. & Thompson, M. M. Matrix metalloproteinase 8 (neutrophil collagenase) in the pathogenesis of abdominal aortic aneurysm. Br. J. Surg. 92, 828–833 (2005).

    CAS  PubMed  Google Scholar 

  62. Wilson, W. R. et al. Matrix metalloproteinase-8 and -9 are increased at the site of abdominal aortic aneurysm rupture. Circulation 113, 438–445 (2006).

    CAS  PubMed  Google Scholar 

  63. Goodall, S., Crowther, M., Hemingway, D. M., Bell, P. R. & Thompson, M. M. Ubiquitous elevation of matrix metalloproteinase-2 expression in the vasculature of patients with abdominal aneurysms. Circulation 104, 304–309 (2001).

    CAS  PubMed  Google Scholar 

  64. Knox, J. B., Sukhova, G. K., Whittemore, A. D. & Libby, P. Evidence for altered balance between matrix metalloproteinases and their inhibitors in human aortic diseases. Circulation 95, 205–212 (1997).

    CAS  PubMed  Google Scholar 

  65. Sakalihasan, N., Delvenne, P., Nusgens, B. V., Limet, R. & Lapiere, C. M. Activated forms of MMP2 and MMP9 in abdominal aortic aneurysms. J. Vasc. Surg. 24, 127–133 (1996).

    CAS  PubMed  Google Scholar 

  66. Hovsepian, D. M. et al. Elevated plasma levels of matrix metalloproteinase-9 in patients with abdominal aortic aneurysms: a circulating marker of degenerative aneurysm disease. J. Vasc. Interv. Radiol. 11, 1345–1352 (2000).

    CAS  PubMed  Google Scholar 

  67. Eugster, T. et al. Aminoterminal propeptide of type III procollagen and matrix metalloproteinases-2 and -9 failed to serve as serum markers for abdominal aortic aneurysm. Eur. J. Vasc. Endovasc. Surg. 29, 378–382 (2005).

    CAS  PubMed  Google Scholar 

  68. van Laake, L. W. et al. Systemic dilation diathesis in patients with abdominal aortic aneurysms: a role for matrix metalloproteinase-9? Eur. J. Vasc. Endovasc. Surg. 29, 371–377 (2005).

    CAS  PubMed  Google Scholar 

  69. Karlsson, L., Bergqvist, D., Lindbäck, J. & Pärsson, H. Expansion of small-diameter abdominal aortic aneurysms is not reflected by the release of inflammatory mediators IL-6, MMP-9 and CRP in plasma. Eur. J. Vasc. Endovasc. Surg. 37, 420–424 (2009).

    CAS  PubMed  Google Scholar 

  70. Hummel, V. et al. Production of MMPs in human cerebral endothelial cells and their role in shedding adhesion molecules. J. Neuropathol. Exp. Neurol. 60, 320–327 (2001).

    CAS  PubMed  Google Scholar 

  71. Liu, J. et al. Lysosomal cysteine proteases in atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 24, 1359–1366 (2004).

    CAS  PubMed  Google Scholar 

  72. Punturieri, A. et al. Regulation of elastinolytic cysteine proteinase activity in normal and cathepsin K-deficient human macrophages. J. Exp. Med. 192, 789–799 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Reddy, V. Y., Zhang, Q. Y. & Weiss, S. J. Pericellular mobilization of the tissue-destructive cysteine proteinases, cathepsins B, L and S by human monocyte-derived macrophages. Proc. Natl Acad. Sci. USA 92, 3849–3853 (1995).

    CAS  PubMed  Google Scholar 

  74. Sukhova, G. K., Shi, G. P., Simon, D. I., Chapman, H. A. & Libby, P. Expression of the elastolytic cathepsins S and K in human atheroma and regulation of their production in smooth muscle cells. J. Clin. Invest. 102, 576–583 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Sukhova, G. K. et al. Cystatin C deficiency increases elastic lamina degradation and aortic dilatation in apolipoprotein E-null mice. Circ. Res. 96, 368–375 (2005).

    CAS  PubMed  Google Scholar 

  76. Shi, G. P. et al. Cystatin C deficiency in human atherosclerosis and aortic aneurysms. J. Clin. Invest. 104, 1191–1197 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Liu, J. et al. Cathepsin L expression and regulation in human abdominal aortic aneurysm, atherosclerosis, and vascular cells. Atherosclerosis 184, 302–311 (2006).

    CAS  PubMed  Google Scholar 

  78. Lindholt, J. S., Erlandsen, E. J. & Henneberg, E. W. Cystatin C deficiency is associated with the progression of small abdominal aortic aneurysms. Br. J. Surg. 88, 1472–1475 (2001).

    CAS  PubMed  Google Scholar 

  79. Eriksson, P. et al. Genetic approach to the role of cysteine proteases in the expansion of abdominal aortic aneurysms. Br. J. Surg. 91, 86–89 (2004).

    CAS  PubMed  Google Scholar 

  80. Reed, C. H. Diagnostic applications of cystatin C. Br. J. Biomed. Sci. 57, 323–329 (2000).

    CAS  PubMed  Google Scholar 

  81. Wiman, B. & Collen, D. On the mechanism of the reaction between human alpha 2-antiplasmin and plasmin. J. Biol. Chem. 254, 9291–9297 (1979).

    CAS  PubMed  Google Scholar 

  82. Murphy, G., Atkinson, S., Ward, R., Gavrilovic, J. & Reynolds, J. J. The role of plasminogen activators in the regulation of connective tissue metalloproteinases. Ann. NY Acad. Sci. 667, 1–12 (1992).

    CAS  PubMed  Google Scholar 

  83. Werb, Z., Banda, M. J. & Jones, P. A. Degradation of connective tissue matrices by macrophages. I. Proteolysis of elastin, glycoproteins, and collagen by proteinases isolated from macrophages. J. Exp. Med. 152, 1340–1357 (1980).

    CAS  PubMed  Google Scholar 

  84. Lindholt, J. S., Jorgensen, B., Shi, G. P. & Henneberg, E. W. Relationships between activators and inhibitors of plasminogen, and the progression of small abdominal aortic aneurysms. Eur. J. Vasc. Endovasc. Surg. 25, 546–551 (2003).

    CAS  PubMed  Google Scholar 

  85. Sofi, F. et al. High levels of homocysteine, lipoprotein (a) and plasminogen activator inhibitor-1 are present in patients with abdominal aortic aneurysm. Thromb. Haemost. 94, 1094–1098 (2005).

    CAS  PubMed  Google Scholar 

  86. Adam, D. J., Ludlam, C. A., Ruckley, C. V. & Bradbury, A. W. Coagulation and fibrinolysis in patients undergoing operation for ruptured and nonruptured infrarenal abdominal aortic aneurysms. J. Vasc. Surg. 30, 641–650 (1999).

    CAS  PubMed  Google Scholar 

  87. Dahlback, B. Blood coagulation. Lancet 355, 1627–1632 (2000).

    CAS  PubMed  Google Scholar 

  88. Kolbel, T., Strandberg, K., Mattiasson, I., Stenflo, J. & Lindblad, B. Activated protein C–protein C inhibitor complex: a new biological marker for aortic aneurysms. J. Vasc. Surg. 43, 935–939 (2006).

    PubMed  Google Scholar 

  89. Kolbel, T. et al. Activated protein C–protein C inhibitor complex in patients with abdominal aortic aneurysms: is it associated with diameter and growth rate? Vasc. Endovasc. Surg. 42, 135–140 (2008).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Femke A. M. V. I. Hellenthal.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hellenthal, F., Buurman, W., Wodzig, W. et al. Biomarkers of AAA progression. Part 1: extracellular matrix degeneration. Nat Rev Cardiol 6, 464–474 (2009). https://doi.org/10.1038/nrcardio.2009.80

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2009.80

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing