Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cardiovascular pharmacogenomics and individualized drug therapy

Abstract

The goal of individualized drug therapy requires physicians to be able to accurately predict an individual's response to a drug. Both genetic and environmental factors are known to influence drug response. 'Pharmacogenetics' is the study of the role of inheritance in variation in drug response phenotypes. Pharmacogenetics is now moving genome-wide to become 'pharmacogenomics', resulting in the recognition of novel biomarkers for individual variation in drug response. This article reviews the development, promise and challenges facing pharmacogenomics, using examples of drugs used to treat or prevent cardiovascular disease.

Key Points

  • Genetic variation has an important role in explaining individual variation in drug response, and genetic analysis could help us provide appropriate care to individual patients

  • Historically, this type of study has been confined to candidate genes for proteins involved in known pharmacokinetic and pharmacodynamic pathways for the drug—that is, 'pharmacogenetics'

  • Pharmacokinetic pathways influence the concentration of a drug reaching its target

  • Pharmacodynamic pathways influence the drug target itself and signaling pathways downstream of the drug target

  • Our ability to perform genome-wide studies across the entire human genome has transformed 'pharmacogenetics' into 'pharmacogenomics'

  • Clinical trials are needed to assess the clinical utility of genotyping in drug therapy and to justify the cost of genetic testing in clinical practice

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Warfarin, which is metabolized by CYP2C9, inhibits the vitamin K cycle via actions on thiol-dependent enzymes, such as VKORC1, that are required for regeneration of active vitamin K.
Figure 2: Genome-wide association study data for statin-induced myopathy.
Figure 3: Diagrammatic representation of the use of a cell-line-based model system to identify and validate, both functionally and clinically, pharmacogenomic candidate genes.

Similar content being viewed by others

References

  1. Scriver, C. R. & Childs, B. (eds) Garrod's Inborn Factors in Disease (Oxford University Press, New York, 1989). [Oxford Monographs on Medical Genetics Vol. 16].

    Google Scholar 

  2. Motulsky, A. G. Drug reactions enzymes, and biochemical genetics. JAMA 165, 835–837 (1957).

    Article  CAS  Google Scholar 

  3. Vesell, E. S. & Page, J. G. Genetic control of drug levels in man: antipyrine. Science 161, 72–73 (1968).

    Article  CAS  Google Scholar 

  4. Kalow, W. & Gunn, D. R. The relationship between dose of succinylcholine and duration of apnea in man. J. Pharmacol. Exp. Ther. 120, 203–214 (1957).

    CAS  PubMed  Google Scholar 

  5. Kalow, W. & Gunn, D. R. Some statistical data on atypical cholinesterase of human serum. Ann. Hum. Genet. 23, 239–250 (1959).

    Article  CAS  Google Scholar 

  6. Lockridge, O. in Pharmacogenetics of Drug Metabolism: International Encyclopedia of Pharmacology and Therapeutics (ed. Kalow, W.) 15–50 (Pergamon Press, New York, 1992).

    Google Scholar 

  7. Pearson, T. A. & Manolio, T. A. How to interpret a genome-wide association study. JAMA 299, 1335–1344 (2008).

    Article  CAS  Google Scholar 

  8. Reidenberg, M. M., Drayer, D. E., Levy, M. & Warner, H. Polymorphic acetylation procainamide in man. Clin. Pharmacol. Ther. 17, 722–730 (1975).

    Article  CAS  Google Scholar 

  9. Perry, H. M. Jr, Tan, E. M., Carmody, S. & Sakamoto, A. Relationship of acetyl transferase activity to antinuclear antibodies and toxic symptoms in hypertensive patients treated with hydralazine. J. Lab. Clin. Med. 76, 114–125 (1970).

    PubMed  Google Scholar 

  10. Price Evans, D. A. in Pharmacogenetics of Drug Metabolism: International Encyclopedia of Pharmacology and Therapeutics (ed. Kalow, W.) 95–178 (Pergamon Press, New York, 1992).

    Google Scholar 

  11. Eichelbaum, M., Spannbrucker, N., Steincke, B. & Dengler, H. J. Defective N-oxidation of sparteine in man: a new pharmacogenetic defect. Eur. J. Clin. Pharmacol. 16, 183–187 (1979).

    Article  CAS  Google Scholar 

  12. Lennard, M. S. et al. Oxidation phenotype—a major determinant of metoprolol metabolism and response. N. Engl. J. Med. 307, 1558–1560 (1982).

    Article  CAS  Google Scholar 

  13. Gonzalez, F. J. et al. Human debrisoquine 4-hydroxylase (P450IID1): cDNA and deduced amino acid sequence and assignment of the CYP2D locus of chromosome 22. Genomics 2, 174–179 (1988).

    Article  CAS  Google Scholar 

  14. Kimura, S., Umeno, M., Skoda, R. C., Meyer, U. A. & Gonzalez, F. J. The human debrisoquine 4-hydroxylase (CYP2D) locus: sequence and identification of the polymorphic CYP2D6 gene, a related gene, and a pseudogene. Am. J. Hum. Genet. 45, 889–904 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Johansson, I. et al. Inherited amplification of an active gene in the cytochrome P450 CYP2D locus as a cause of ultrarapid metabolism of debrisoquine. Proc. Natl Acad. Sci. USA 90, 11825–11829 (1993).

    Article  CAS  Google Scholar 

  16. Akulli, E. et al. Frequent distribution of ultrarapid metabolizers of debrisoquine in an Ethiopian population carrying duplicated and multiduplicated functional CYP2D6 alleles. J. Pharmacol. Exp. Ther. 278, 441–446 (1996).

    Google Scholar 

  17. Mega, J. L. et al. Cytochrome p-450 polymorphisms and response to clopidogrel. N. Engl. J. Med. 360, 354–362 (2008).

    Article  Google Scholar 

  18. Roger, V. L. et al. Trends in heart failure incidence and survival in a community-based population. JAMA 292, 344–350 (2004).

    Article  CAS  Google Scholar 

  19. Bardy G. H. et al. Amiodarone or an implantable cardioverter-defibrillator for congestive heart failure. N. Engl. J. Med. 352, 225–237 (2005).

    Article  CAS  Google Scholar 

  20. The Beta-Blocker Evaluation of Survival Trial Investigators. A trial of the beta-blocker bucindolol in patients with advanced chronic heart failure. N. Engl. J. Med. 344, 1659–1667 (2001).

  21. Taylor, M. R. Pharmacogenetics of the human beta-adrenergic receptors. Pharmacogenomics J. 7, 29–37 (2007).

    Article  CAS  Google Scholar 

  22. Moore, J. D., Mason, D. A., Green, S. A., Hsu, J. & Liggett, S. B. Racial differences in the frequencies of cardiac beta(1)-adrenergic receptor polymorphisms: analysis of c145A>G and c1165G>C. Hum. Mutat. 14, 271 (1999).

    Article  CAS  Google Scholar 

  23. Liggett, S. B. et al. A polymorphism within a conserved beta(1)-adrenergic receptor motif alters cardiac function and beta-blocker response in human heart failure. Proc. Natl Acad. Sci. USA 103, 11288–11293 (2006).

    Article  CAS  Google Scholar 

  24. Small, K. M., Forbes, S. L., Rahman, F. F., Bridges, K. M. & Liggett, S. B. A four amino acid deletion polymorphism in the third intracellular loop of the human alpha 2C-adrenergic receptor confers impaired coupling to multiple effectors. J. Biol. Chem. 275, 23059–23064 (2000).

    Article  CAS  Google Scholar 

  25. Small, K. M., Wagoner, L. E., Levin, A. M., Kardia, S. L. & Liggett, S. B. Synergistic polymorphisms of beta1- and alpha2C-adrenergic receptors and the risk of congestive heart failure. N. Engl. J. Med. 347, 1135–1142 (2002).

    Article  CAS  Google Scholar 

  26. Liggett, S. B. et al. A GRK5 polymorphism that inhibits beta-adrenergic receptor signaling is protective in heart failure. Nat. Med. 14, 510–517 (2008).

    Article  CAS  Google Scholar 

  27. Budnitz, D. S., Shehab, N., Kegler, S. R. & Richards, C. L. Medication use leading to emergency department visits for adverse drug events in older adults. Ann. Intern. Med. 147, 755–765 (2007).

    Article  Google Scholar 

  28. O'Reilly, R. A., Aggeler, P. M., Hoag, M. S., Leong, L. S. & Kropatkin, M. L. Hereditary transmission of exceptional resistance to coumarin anticoagulant drugs. The first reported kindred. N. Engl. J. Med. 271, 809–815 (1964).

    Article  CAS  Google Scholar 

  29. Daly, A. K. & King, B. P. Pharmacogenetics of oral anticoagulants. Pharmacogenetics 13, 247–252 (2003).

    Article  CAS  Google Scholar 

  30. Aithal, G. P., Day, C. P., Kesteven, P. J. & Daly, A. K. Association of polymorphisms in the cytochrome P450 CYP2C9 with warfarin dose requirement and risk of bleeding complications. Lancet 353, 717–719 (1999).

    Article  CAS  Google Scholar 

  31. Rost, S. et al. Mutations in VKORC1 cause warfarin resistance and multiple coagulation factor deficiency type 2. Nature 427, 537–541 (2004).

    Article  CAS  Google Scholar 

  32. Rieder, M. J. et al. Effect of VKORC1 haplotypes on transcriptional regulation and warfarin dose. N. Engl. J. Med. 352, 2285–2293 (2005).

    Article  CAS  Google Scholar 

  33. Schwarz, U. I. et al. Genetic determinants of response to warfarin during initial anticoagulation. N. Engl. J. Med. 358, 999–1008 (2008).

    Article  CAS  Google Scholar 

  34. Lesko, L. J. The critical path of warfarin dosing: finding an optimal dosing strategy using pharmacogenetics. Clin. Pharmacol. Ther. 84, 301–303 (2008).

    Article  CAS  Google Scholar 

  35. International Warfarin Pharmacogenetics Consortium et al. Estimation of the warfarin dose with clinical and pharmacogenetic data. N. Engl. J. Med. 360, 753–764 (2009).

  36. http://clinicaltrials.gov/ct2/show/NCT00839657

  37. The SEARCH Collaborative Group et al. SLCO1B1 variants and statin-induced myopathy—a genomewide study. N. Engl. J. Med. 359, 789–799 (2008).

  38. Mangravite, L. M. & Krauss, R. M. Pharmacogenomics of statin response. Curr. Opin. Lipidol. 18, 409–414 (2007).

    CAS  PubMed  Google Scholar 

  39. Zuccaro, P. et al. Tolerability of statins is not linked to CYP450 polymorphisms, but reduced CYP2D6 metabolism improves cholesteraemic response to simvastatin and fluvastatin. Pharmacol. Res. 55, 310–317 (2007).

    Article  CAS  Google Scholar 

  40. Wang, L. & Weinshilboum, R. M. Pharmacogenomics: candidate gene identification, functional validation and mechanisms. Hum. Mol. Genet. 17, R174–R179 (2008).

    Article  CAS  Google Scholar 

  41. Li, L. et al. Gemcitabine and cytosine arabinoside cytotoxicity: association with lymphoblastoid cell expression. Cancer Res. 68, 7050–7058 (2008).

    Article  CAS  Google Scholar 

  42. Pei, H. et al. FKBP51 acts as a scaffolding protein to regulate Akt phosphorylation. Cancer Cell (in press).

  43. Weinstein, J. N. Spotlight on molecular profiling: 'Integromic' analysis of the NCI-60 cancer cell lines. Mol. Cancer Ther. 5, 2601–2605 (2006).

    Article  CAS  Google Scholar 

  44. Hughes, D. A. & Pirmohamed, M. Warfarin pharmacogenetics: economic considerations. Pharmacoeconomics 25, 899–902 (2007).

    Article  Google Scholar 

  45. Eckman, M. H., Rosand, J., Greenberg, S. M. & Gage, B. F. Cost-effectiveness of using pharmacogenetic information in warfarin dosing for patients with nonvalvular atrial fibrillation. Ann. Intern. Med. 150, 73–83 (2009).

    Article  Google Scholar 

  46. Hudson, K. L., Holohan, M. K. & Collins, F. S. Keeping pace with the times—the Genetic Information Nondiscrimination Act of 2008. N. Engl. J. Med. 358, 2661–2663 (2008).

    Article  CAS  Google Scholar 

  47. Jones, M. Francis Collins Addresses State of Personalized Medicine. GenomeWeb [online], (2009).

Download references

Acknowledgements

Supported in part by HL 84904 (Heart Failure Clinical Research Network), a Marie Ingalls Cardiovascular Career Development Award (N. L. Pereira), a PhRMA Foundation “Center of Excellence in Clinical Pharmacology” Award (R. M. Weinshilboum), and NIH grants UL1RR24150 (N. L. Pereira), R01 GM28157 (R. M. Weinshilboum), R01 CA132780 (R. M. Weinshilboum) and U01 GM61388 (The Pharmacogenetics Research Network). We thank L. Wussow for her assistance with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naveen L. Pereira.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pereira, N., Weinshilboum, R. Cardiovascular pharmacogenomics and individualized drug therapy. Nat Rev Cardiol 6, 632–638 (2009). https://doi.org/10.1038/nrcardio.2009.154

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2009.154

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing