Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Establishment of outgrowth endothelial cells from peripheral blood

Subjects

Abstract

Blood outgrowth endothelial cells (BOECs) are important tools when investigating diagnostic and therapeutic approaches for vascular disease. In this protocol, mononuclear cells are isolated from peripheral blood and plated on type I collagen at 135,000 cells per cm2 in endothelial cell differentiation medium. On average, 0.34 colonies of endothelial cells per milliliter of blood can be obtained. Colonies of endothelial cells become visible after 14–28 d. Upon confluence, these rapidly expanding colonies can be passaged and have been shown to propagate up to 1018-fold. Isolated BOECs are phenotypically similar to vascular endothelial cells, as revealed by their cobblestone morphology, the presence of endothelial cell–specific Weibel-Palade bodies and the expression of endothelial cell markers such as VE-cadherin. The protocol presented here also provides a particularly useful tool for the ex vivo assessment of endothelial cell function from patients with different vascular abnormalities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: BOEC morphology.
Figure 2: Blood separation.
Figure 3: BOEC characterization by immunostaining.

Similar content being viewed by others

References

  1. Aird, W.C. Phenotypic heterogeneity of the endothelium: I. Structure, function, and mechanisms. Circ. Res. 100, 158–173 (2007).

    Article  CAS  Google Scholar 

  2. Aird, W.C. Phenotypic heterogeneity of the endothelium: II. Representative vascular beds. Circ. Res. 100, 174–190 (2007).

    Article  CAS  Google Scholar 

  3. Pober, J.S. & Tellides, G. Participation of blood vessel cells in human adaptive immune responses. Trends Immunol. 33, 49–57 (2012).

    Article  CAS  Google Scholar 

  4. Navarro, S. et al. The endothelial cell protein C receptor: its role in thrombosis. Thromb. Res. 128, 410–416 (2011).

    Article  CAS  Google Scholar 

  5. Hasstedt, S.J. et al. Cell adhesion molecule 1: a novel risk factor for venous thrombosis. Blood 114, 3084–3091 (2009).

    Article  CAS  Google Scholar 

  6. de Groot, P.G. et al. von Willebrand factor synthesized by endothelial cells from a patient with type IIB von Willebrand disease supports platelet adhesion normally but has an increased affinity for platelets. Proc. Natl. Acad. Sci. USA 86, 3793–3797 (1989).

    Article  CAS  Google Scholar 

  7. Federici, A.B. et al. Type I von Willebrand disease, subtype 'platelet low': decreased platelet adhesion can be explained by low synthesis of von Willebrand factor in endothelial cells. Br. J. Haematol. 83, 88–93 (1993).

    Article  CAS  Google Scholar 

  8. Ewenstein, B.M., Inbal, A., Pober, J.S. & Handin, R.I. Molecular studies of von Willebrand disease: reduced von Willebrand factor biosynthesis, storage, and release in endothelial cells derived from patients with type I von Willebrand disease. Blood 75, 1466–1472 (1990).

    Article  CAS  Google Scholar 

  9. Lin, Y., Weisdorf, D.J., Solovey, A. & Hebbel, R.P. Origins of circulating endothelial cells and endothelial outgrowth from blood. J. Clin. Invest. 105, 71–77 (2000).

    Article  CAS  Google Scholar 

  10. Medina, R.J. et al. Molecular analysis of endothelial progenitor cell (EPC) subtypes reveals two distinct cell populations with different identities. BMC Med. Genomics 3, 18 (2010).

    Article  CAS  Google Scholar 

  11. Gulati, R. et al. Autologous culture-modified mononuclear cells confer vascular protection after arterial injury. Circulation 108, 1520–1526 (2003).

    Article  Google Scholar 

  12. Hirschi, K.K., Ingram, D.A. & Yoder, M.C. Assessing identity, phenotype, and fate of endothelial progenitor cells. Arterioscler. Thromb. Vasc. Biol. 28, 1584–1595 (2008).

    Article  CAS  Google Scholar 

  13. Jiang, A., Pan, W., Milbauer, L.C., Shyr, Y. & Hebbel, R.P. A practical question based on cross-platform microarray data normalization: are BOEC more like large vessel or microvascular endothelial cells or neither of them? J. Bioinform. Comput. Biol. 5, 875–893 (2007).

    Article  CAS  Google Scholar 

  14. Pan, W., Shen, X., Jiang, A. & Hebbel, R.P. Semi-supervised learning via penalized mixture model with application to microarray sample classification. Bioinformatics 22, 2388–2395 (2006).

    Article  CAS  Google Scholar 

  15. Rondaij, M.G., Bierings, R., Kragt, A., van Mourik, J.A. & Voorberg, J. Dynamics and plasticity of Weibel-Palade bodies in endothelial cells. Arterioscler. Thromb. Vasc. Biol. 26, 1002–1007 (2006).

    Article  CAS  Google Scholar 

  16. van den Biggelaar, M. et al. Storage and regulated secretion of factor VIII in blood outgrowth endothelial cells. Haematologica 94, 670–678 (2009).

    Article  CAS  Google Scholar 

  17. van den Biggelaar, M., Bouwens, E.A., Voorberg, J. & Mertens, K. Storage of factor VIII variants with impaired von Willebrand factor binding in Weibel-Palade bodies in endothelial cells. PLoS. ONE 6, e24163 (2011).

    Article  CAS  Google Scholar 

  18. Valentijn, K.M., Sadler, J.E., Valentijn, J.A., Voorberg, J. & Eikenboom, J. Functional architecture of Weibel-Palade bodies. Blood 117, 5033–5043 (2011).

    Article  CAS  Google Scholar 

  19. Bouwens, E.A. et al. Factor VIII alters tubular organization and functional properties of von Willebrand factor stored in Weibel-Palade bodies. Blood 118, 5947–5956 (2011).

    Article  CAS  Google Scholar 

  20. Fernandez, L.A. et al. Blood outgrowth endothelial cells from hereditary haemorrhagic telangiectasia patients reveal abnormalities compatible with vascular lesions. Cardiovasc. Res. 68, 235–248 (2005).

    Article  CAS  Google Scholar 

  21. Chang Milbauer, L. et al. Genetic endothelial systems biology of sickle stroke risk. Blood 111, 3872–3879 (2008).

    Article  CAS  Google Scholar 

  22. Wei, P. et al. Differential endothelial cell gene expression by African Americans versus Caucasian Americans: a possible contribution to health disparity in vascular disease and cancer. BMC Med. 9, 2 (2011).

    Article  CAS  Google Scholar 

  23. Milbauer, L.C. et al. Blood outgrowth endothelial cell migration and trapping in vivo: a window into gene therapy. Transl. Res. 153, 179–189 (2009).

    Article  CAS  Google Scholar 

  24. Matsui, H. et al. Ex vivo gene therapy for hemophilia A that enhances safe delivery and sustained in vivo factor VIII expression from lentivirally engineered endothelial progenitors. Stem Cells 25, 2660–2669 (2007).

    Article  CAS  Google Scholar 

  25. De Meyer, S.F. et al. Phenotypic correction of von Willebrand disease type 3 blood-derived endothelial cells with lentiviral vectors expressing von Willebrand factor. Blood 107, 4728–4736 (2006).

    Article  CAS  Google Scholar 

  26. Dudek, A.Z. et al. Systemic inhibition of tumour angiogenesis by endothelial cell-based gene therapy. Br. J. Cancer 97, 513–522 (2007).

    Article  CAS  Google Scholar 

  27. Bodempudi, V. et al. Blood outgrowth endothelial cell-based systemic delivery of antiangiogenic gene therapy for solid tumors. Cancer Gene Ther. 17, 855–863 (2010).

    Article  CAS  Google Scholar 

  28. Critser, P.J. & Yoder, M.C. Endothelial colony-forming cell role in neoangiogenesis and tissue repair. Curr. Opin. Organ Transplant. 15, 68–72 (2010).

    Article  Google Scholar 

  29. Au, P. et al. Differential in vivo potential of endothelial progenitor cells from human umbilical cord blood and adult peripheral blood to form functional long-lasting vessels. Blood 111, 1302–1305 (2008).

    Article  CAS  Google Scholar 

  30. Medina, R.J., O'Neill, C.L., Humphreys, M.W., Gardiner, T.A. & Stitt, A.W. Outgrowth endothelial cells: characterization and their potential for reversing ischemic retinopathy. Invest. Ophthalmo. Vis. Sci. 51, 5906–5913 (2010).

    Article  Google Scholar 

  31. Schwarz, T.M. et al. Vascular incorporation of endothelial colony-forming cells is essential for functional recovery of murine ischemic tissue following cell therapy. Arterioscler. Thromb. Vasc. Biol. 32, e13–e21 (2012).

    Article  CAS  Google Scholar 

  32. Lin, Y. et al. Use of blood outgrowth endothelial cells for gene therapy for hemophilia A. Blood 99, 457–462 (2002).

    Article  CAS  Google Scholar 

  33. Moubarik, C. et al. Transplanted late outgrowth endothelial progenitor cells as cell therapy product for stroke. Stem Cell Rev. 7, 208–220 (2011).

    Article  Google Scholar 

  34. Reinisch, A. et al. Humanized large-scale expanded endothelial colony-forming cells functions in vitro and in vivo. Blood 113, 6716–6725 (2009).

    Article  CAS  Google Scholar 

  35. Somani, A. et al. The establishment of murine blood outgrowth endothelial cells and observations relevant to gene therapy. Transl. Res. 1, 30–39 (2007).

    Article  CAS  Google Scholar 

  36. van Agtmaal, E. et al. The shear stress-induced transcription factor KLF2 affects dynamics and angiopoietin-2 content of Weibel-Palade bodies. PLoS ONE 7, e38399 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

J.M.-R. and M.H. are supported by a grant from Center for Translational Molecular Medicine, grant no. INCOAG-01C-201-04. R.P.H. is supported by US National Institutes of Health grants HL62931 and HL55552.

Author information

Authors and Affiliations

Authors

Contributions

J.M.-R., M.H. and J.V. developed the current protocol that is based on the original protocol described by Lin and co-workers. J.M.-R., M.H., M.v.d.B., R.P.H. and J.V. wrote the manuscript. All authors approved the final version of the manuscript.

Corresponding author

Correspondence to Jan Voorberg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martin-Ramirez, J., Hofman, M., van den Biggelaar, M. et al. Establishment of outgrowth endothelial cells from peripheral blood. Nat Protoc 7, 1709–1715 (2012). https://doi.org/10.1038/nprot.2012.093

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2012.093

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing