Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Single-nucleotide polymorphism (SNP) genotyping using cationic conjugated polymers in homogeneous solution

Abstract

This protocol describes a simple, convenient and sensitive single-nucleotide polymorphism (SNP) genotyping method using an optically amplifying cationic conjugated polymer and single base primer extension reaction. The fluorescence resonance energy transfer (FRET) efficiency between the conjugated polymer (PFP, poly{(1,4-phenylene)-2,7-[9,9-bis(6'-N,N,N-trimethyl ammonium)-hexyl fluorene] dibromide}) and a fluorescein-labeled dNTP (dNTP-Fl) is correlated to the incorporation of the dNTP-Fl into an allele-specific primer; incorporation occurs by a single base extension reaction when the target DNA and the primer are complementary at the SNP site. By triggering the FRET from PFP to fluorescein and measuring the change in fluorescence intensity of samples, the SNP genotypes can be discriminated. In comparison with other SNP genotyping methods, this protocol simplifies procedures and improves sensitivity by eliminating the need for primer labeling, cumbersome workups, chemical/enzymatic coupling reactions and sophisticated instruments. The assay takes about 2 h for PCR amplification followed by 5.5–7.5 h to obtain the genotypes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Outline of CP-based SNP genotyping.
Figure 2: Fluorescence assay results for single-nucleotide polymorphism (SNP) site (rs2241715: G>T) using CP-based SNP genotyping method.
Figure 3: Genotyping results for single-nucleotide polymorphism (SNP) site (rs1800469: C>T) using CP-based SNP genotyping method.
Figure 4: Genotyping results for single-nucleotide polymorphism (SNP) site (rs2241715:G>T) using CP-based SNP genotyping method.

Similar content being viewed by others

References

  1. The International HapMap Consortium. A haplotype map of the human genome. Nature 437, 1299–1320 (2005).

  2. The International HapMap Consortium. A second generation human haplotype map of over 3.1 million SNPs. Nature 449, 851–861 (2007).

  3. Yang, Q., Kathiresan, S., Lin, J.P., Tofler, G.H. & O'Donnell, C.J. Genome-wide association and linkage analyses of hemostatic factors and hematological phenotypes in the Framingham Heart Study. BMC Med. Genet. 8 (Suppl 1): S12 (2007).

    Article  Google Scholar 

  4. Scuteri, A. et al. Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits. PLoS Genet. 3, e115 (2007).

    Article  Google Scholar 

  5. Shabo, A. Integrating genomics into clinical practice: standards and regulatory challenges. Curr. Opin. Mol. Ther. 10, 267–272 (2008).

    PubMed  Google Scholar 

  6. Kim, S. & Misra, A. SNP genotyping: technologies and biomedical applications. Annu. Rev. Biomed. Eng. 9, 289–320 (2007).

    Article  CAS  Google Scholar 

  7. Kirk, B.W., Feinsod, M., Favis, R., Kliman, R.M. & Barany, F. Single nucleotide polymorphism seeking long-term association with complex disease. Nucleic Acids Res. 30, 3295–3311 (2002).

    Article  CAS  Google Scholar 

  8. Cotton, R.G.H., Edkins, E. & Forrest, S. Mutation Detection. Oxford University Press, New York, USA, 1998.

    Google Scholar 

  9. Ranade, K. et al. High-throughput genotyping with single nucleotide polymorphisms. Genome Res. 11, 1262–1268 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Rao, K.V.N. et al. Genotyping single nucleotide polymorphisms directly from genomic DNA by invasive cleavage reaction on microspheres. Nucleic Acids Res. 31, e66 (2003).

    Article  Google Scholar 

  11. Olivier, M. The Invader assay for SNP genotyping. Mutation Research 573, 103–110 (2005).

    Article  CAS  Google Scholar 

  12. Li, J. & Makrigiorgos, G.M. Anti-primer quenching-based real-time PCR for simplex or multiplex DNA quantification and single nucleotide polymorphism genotyping,. Nat. Protoc. 2, 50–58 (2007).

    Article  CAS  Google Scholar 

  13. Kwok, P.Y. SNP genotyping with fluorescence polarization detection. Hum. Mutat. 19, 315–323 (2002).

    Article  CAS  Google Scholar 

  14. Royo, J.L., Hidalgo, M. & Ruiz, A. Pyrosequencing protocol using a universal biotinylated primer for mutation detection and SNP genotyping. Nat. Protoc. 2, 1734–1739 (2007).

    Article  CAS  Google Scholar 

  15. Lavebratt, C. & Sengul, S. Single nucleotide polymorphism (SNP) allele frequency estimation in DNA pools using pyrosequencing. Nat. Protoc. 1, 2573–2582 (2006).

    Article  CAS  Google Scholar 

  16. Tost, J. & Gut, I.G. Genotyping single nucleotide polymorphisms by mass spectrometry. Mass Spectro. Rev. 21, 388–418 (2002).

    Article  CAS  Google Scholar 

  17. Kim, Y., Sohn, D. & Tan, W.H. Molecular beacons in biomedical detection and clinical diagnosis. Int. J. Clin. Exp. Pathol. 1, 105–116 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Yesilkaya, H. et al. Evaluation of molecular-beacon, TaqMan, and fluorescence resonance energy transfer probes for detection of antibiotic resistance-conferring single nucleotide polymorphisms in mixed Mycobacterium tuberculosis DNA extracts,. J. Clin. Microbiol. 44, 3826–3829 (2006).

    Article  CAS  Google Scholar 

  19. Gaylord, B.S., Massie, M.R., Feinstein, S.C. & Bazan, G.C. SNP detection using peptide nucleic acid probes and conjugated polymers: applications in neurodegenerative disease identification. Proc. Natl. Acad. Sci. USA 102, 34–39 (2005).

    Article  CAS  Google Scholar 

  20. Thomas, S.W. III, Joly, G.D. & Swager, T.M. Chemical sensors based on amplifying fluorescent conjugated polymers. Chem. Rev. 107, 1339–1386 (2007).

    Article  CAS  Google Scholar 

  21. Liu, B. & Bazan, G.C. Homogeneous fluorescence-based DNA detection with water-soluble conjugated polymers. Chem. Mater. 16, 4467–4476 (2004).

    Article  CAS  Google Scholar 

  22. He, F. et al. Quadruplex-to-duplex transition of G-rich oligonucleotides probed by cationic water-soluble conjugated polyelectrolytes. J. Am. Chem. Soc. 128, 6764–6765 (2006).

    Article  CAS  Google Scholar 

  23. Feng, F. et al. Cationic conjugated polymer/DNA complexes for amplified fluorescence assays of nucleases and methyltransferases. Adv. Mater. 19, 3490–3495 (2007).

    Article  CAS  Google Scholar 

  24. Xu, H. et al. Magnetically assisted DNA assays: high selectivity using conjugated polymers for amplified fluorescent transduction. Nucleic Acids Res. 33, e83 (2005).

    Article  Google Scholar 

  25. Duan, X.R., Li, Z.P., He, F. & Wang, S. A sensitive and homogeneous SNP detection using cationic conjugated polymers. J. Am. Chem. Soc. 129, 4154–4155 (2007).

    Article  CAS  Google Scholar 

  26. Duan, X., Wang, S. & Li, Z. Conjugated polyelectrolyte-DNA complexes for multi-color and one-tube SNP genotyping assays. Chem. Commun., 1302–1304 (2008).

  27. Duan, X., Liu, L. & Wang, S. Homogeneous and one-step fluorescent allele-specific PCR for SNP genotyping assays using conjugated polyelectrolytes. Biosen. Bioelectron. 24, 2095–2099 (2009).

    Article  CAS  Google Scholar 

  28. Xiao, M. et al. Role of excess inorganic pyrophosphate in primer-extension genotyping assays. Genome Res. 14, 1749–1755 (2004).

    Article  CAS  Google Scholar 

  29. Liu, B., Wang, S., Bazan, G.C. & Mikhailovsky, A. Shape-adaptable water-soluble conjugated polymers. J. Am. Chem. Soc. 125, 13306–13307 (2003).

    Article  CAS  Google Scholar 

  30. Liu, B. & Bazan, G.C. Synthesis of cationic conjugated polymers for use in label-free DNA microarrays. Nat. Protoc. 1, 1698–1702 (2006).

    Article  CAS  Google Scholar 

  31. Li, Z.P., Tsunoda, H., Okano, K., Nagai, K. & Kambara, H. Microchip electrophoresis of tagged probes incorporated with one-colored ddNTP for analyzing single-nucleotide polymorphisms. Anal. Chem. 75, 3345–3351 (2003).

    Article  CAS  Google Scholar 

  32. Deng, G.H. et al. Association of estrogen receptor alpha polymorphisms with susceptibility to chronic hepatitis B virus infection. Hepatology 40, 318–326 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank all the individuals tested. This work was supported in part by grants from the “100 Talents” program of the Chinese Academy of Sciences, the National Natural Science Foundation of China (nos. 20725308, 30621063 and 30872929), the National High-Tech R&D Program of China (nos. 2006AA02Z130 and 2006AA02A412), the Major Research Plan of China (no. 2006CB932102) and the Key Project for the Infectious Diseases of China (no. 2008ZX10002-016).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gangqiao Zhou or Shu Wang.

Supplementary information

Supplementary Data 1

The sequencing results of 26 samples at SNP site rs1800469. (PDF 437 kb)

Supplementary Data 2

The sequencing results of 50 samples at SNP site rs2241715. (PDF 912 kb)

Supplementary Fig. 1

Genotyping results for SNP site (rs1800469: C<T) using CP–based SNP genotyping method with sample number as symbol. FRET ratio of PFP to fluorescein (I530nm/I425nm) using C allele primer as X axis, and that using T allele primer as Y axis. No-template control (NTC) is used as a blank. (PDF 58 kb)

Supplementary Fig. 2

Genotyping results for SNP site (rs2241715:G<T) using CP–based SNP genotyping method with sample number as symbol. FRET ratio of PFP to fluorescein (I530nm/I425nm) using G allele primer as X axis, and that using T allele primer as Y axis. No-template control (NTC) is used as a blank. (PDF 60 kb)

Supplementary Table 1

The purpose and sequences of primers for PCR of SNPs rs1800469 and rs2241715. (PDF 47 kb)

Supplementary Table 2

Purpose and sequences of primers for single base extension reaction of SNPs rs1800469 and rs2241715. (PDF 46 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duan, X., Yue, W., Liu, L. et al. Single-nucleotide polymorphism (SNP) genotyping using cationic conjugated polymers in homogeneous solution. Nat Protoc 4, 984–991 (2009). https://doi.org/10.1038/nprot.2009.70

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2009.70

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing