Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

An efficient platform for screening expression and crystallization of glycoproteins produced in human cells

Abstract

Glycoproteins are involved in diverse biological processes ranging from extracellular contact and recognition to intracellular signaling. Crystal structures of glycoproteins would yield tremendous insight into these processes. But glycoprotein structural analysis has been hindered by difficulties in expressing milligram quantities of stable, homogeneous protein and determining which modifications will yield samples amenable to crystallization. We describe a platform, which we have proven to be effective for rapidly screening expression and crystallization of a challenging glycoprotein target. In this protocol, multiple glycoprotein ectodomain constructs are produced in parallel by transient expression of adherent human embryonic kidney (HEK) 293T cells and are subsequently screened for crystals in microscale quantities by free interface diffusion. As a result, recombinant proteins are produced and processed in a native, mammalian environment, and crystallization screening can be accomplished with as little as 65 μg of protein. Moreover, large numbers of constructs can be generated, screened and scaled up for expression and crystallization, with results obtained in 4 weeks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Workflow for the HEK293T-microfluidic crystallization screening platform.
Figure 2: Large-scale expression.
Figure 3: Substrate specificities of selected glycosidases useful for large-scale deglycosylation.
Figure 4: Microfluidic crystallization chip.
Figure 5: Crystallization using microfluidic free interface diffusion.
Figure 6: Test expression and deglycosylation of glycoproteins.

Similar content being viewed by others

References

  1. Kwong, P.D. et al. Probability analysis of variational crystallization and its application to gp120, the exterior envelope glycoprotein of type 1 human immunodeficiency virus (HIV-1). J. Biol. Chem. 274, 4115–4123 (1999).

    Article  CAS  Google Scholar 

  2. Cockett, M.I., Bebbington, C.R. & Yarranton, G.T. High level expression of tissue inhibitor of metalloproteinases in Chinese hamster ovary cells using glutamine synthetase gene amplification. Biotechnology 8, 662–667 (1990).

    CAS  PubMed  Google Scholar 

  3. Cereghino, J.L. & Cregg, J.M. Heterologous protein expression in the methylotrophic yeast Pichia pastoris . FEMS Microbiol. Rev. 24, 45–66 (2000).

    Article  CAS  Google Scholar 

  4. Bernard, A., Payton, M. & Radford, K.R. Protein expression in the baculovirus system. Curr. Protoc. Protein Sci. Chapter 5, Unit 5.5 (2001).

  5. Shrestha, B., Smee, C. & Gileadi, O. Baculovirus expression vector system: an emerging host for high-throughput eukaryotic protein expression. Methods Mol. Biol. 439, 269–289 (2008).

    Article  CAS  Google Scholar 

  6. Kost, T.A., Condreay, J.P. & Jarvis, D.L. Baculovirus as versatile vectors for protein expression in insect and mammalian cells. Nat. Biotechnol. 23, 567–575 (2005).

    Article  CAS  Google Scholar 

  7. Smith, G.E., Summers, M.D. & Fraser, M.J. Production of human beta interferon in insect cells infected with a baculovirus expression vector. Mol. Cell Biol. 3, 2156–2165 (1983).

    Article  CAS  Google Scholar 

  8. Bhatia, P.K. & Mukhopadhyay, A. Protein glycosylation: implications for in vivo functions and therapeutic applications. Adv. Biochem. Eng. Biotechnol. 64, 155–201 (1999).

    CAS  PubMed  Google Scholar 

  9. Jenkins, N. & Curling, E.M. Glycosylation of recombinant proteins: problems and prospects. Enzyme Microb. Technol. 16, 354–364 (1994).

    Article  CAS  Google Scholar 

  10. Varki, A. Biological roles of oligosaccharides: all of the theories are correct. Glycobiology 3, 97–130 (1993).

    Article  CAS  Google Scholar 

  11. Jenkins, N., Parekh, R.B. & James, D.C. Getting the glycosylation right: implications for the biotechnology industry. Nat. Biotechnol. 14, 975–981 (1996).

    Article  CAS  Google Scholar 

  12. Aricescu, A.R., Lu, W. & Jones, E.Y. A time- and cost-efficient system for high-level protein production in mammalian cells. Acta Crystallogr. D Biol Crystallogr. D62, 1243–1250 (2006).

    Article  CAS  Google Scholar 

  13. Aricescu, A.R. et al. Eukaryotic expression: developments for structural proteomics. Acta Crystallogr. D Biol Crystallogr. D62, 1114–1124 (2006).

    Article  CAS  Google Scholar 

  14. Durocher, Y., Perret, S. & Kamen, A. High-level and high-throughput recombinant protein production by transient transfection of suspension-growing human 293-EBNA1 cells. Nucleic Acids Res. 30, E9 (2002).

    Article  Google Scholar 

  15. Lee, J.E. et al. Structure of the Ebola virus glycoprotein bound to an antibody from a human survivor. Nature 454, 177–183 (2008).

    Article  CAS  Google Scholar 

  16. Chang, V.T. et al. Glycoprotein structural genomics: solving the glycosylation problem. Structure 15, 267–273 (2007).

    Article  CAS  Google Scholar 

  17. Coloma, M.J., Hastings, A., Wims, L.A. & Morrison, S.L. Novel vectors for the expression of antibody molecules using variable regions generated by polymerase chain reaction. J. Immunol. Methods 152, 89–104 (1992).

    Article  CAS  Google Scholar 

  18. Ellgaard, L. & Helenius, A. ER quality control: towards an understanding at the molecular level. Curr. Opin. Cell Biol. 13, 431–437 (2001).

    Article  CAS  Google Scholar 

  19. Ellgaard, L. & Helenius, A. Quality control in the endoplasmic reticulum. Nat. Rev. Mol. Cell Biol. 4, 181–191 (2003).

    Article  CAS  Google Scholar 

  20. Ellgaard, L., Molinari, M. & Helenius, A. Setting the standards: quality control in the secretory pathway. Science 286, 1882–1888 (1999).

    Article  CAS  Google Scholar 

  21. Darlington, G.J. Cryopreservation of mammalian culture cells: preparation and recovery of samples. Cold Spring Harb. Protoc. doi: 10.1101/pdb.prot4350 (2006).

  22. Tom, R., Bisson, L. & Durocher, Y. Culture of HEK293-EBNA1 cells for production of recombinant proteins. Cold Spring Harb. Protoc. doi: 10:1101/pdb.prot4976 (2008).

  23. Bleckwenn, N.A. & Shiloach, J. Large-scale cell culture. Curr. Protoc. Immunol. Appendix 1, Appendix 1U (2004).

  24. Kingston, R.E., Chen, C.A. & Rose, J.K. Calcium phosphate transfection. Curr. Protoc. Mol. Biol. Chapter 9, Unit 9.1 (2003).

  25. Phelan, M.C. Techniques for mammalian cell tissue culture. Curr. Protoc. Mol. Biol. Appendix 3, Appendix 3F (2006).

  26. Demeneix, B. & Behr, J.P. Polyethylenimine (PEI). Adv. Genet. 53, 217–230 (2005).

    CAS  PubMed  Google Scholar 

  27. Kichler, A. Gene transfer with modified polyethylenimines. J. Gene Med. 6 (suppl. 1): S3–S10 (2004).

    Article  CAS  Google Scholar 

  28. Jordan, M. & Wurm, F. Transfection of adherent and suspended cells by calcium phosphate. Methods 33, 136–143 (2004).

    Article  CAS  Google Scholar 

  29. Baldi, L. et al. Transient gene expression in suspension HEK-293 cells: application to large-scale protein production. Biotechnol. Prog. 21, 148–153 (2005).

    Article  CAS  Google Scholar 

  30. Reeves, P.J., Callewaert, N., Contreras, R. & Khorana, H.G. Structure and function in rhodopsin: high-level expression of rhodopsin with restricted and homogeneous N-glycosylation by a tetracycline-inducible N-acetylglucosaminyltransferase I-negative HEK293S stable mammalian cell line. Proc. Natl Acad. Sci. USA 99, 13419–13424 (2002).

    Article  CAS  Google Scholar 

  31. Davis, S.J. et al. Ligand binding by the immunoglobulin superfamily recognition molecule CD2 is glycosylation-independent. J. Biol. Chem. 270, 369–375 (1995).

    Article  Google Scholar 

  32. Chirifu, M. et al. Crystal structure of the IL-15-IL-15Ralpha complex, a cytokine-receptor unit presented in trans. Nat. Immunol. 8, 1001–1007 (2007).

    Article  CAS  Google Scholar 

  33. English, C.M., Adkins, M.W., Carson, J.J., Churchill, M.E. & Tyler, J.K. Structural basis for the histone chaperone activity of Asf1. Cell 127, 495–508 (2006).

    Article  CAS  Google Scholar 

  34. Kwon, H.J., Lagace, T.A., McNutt, M.C., Horton, J.D. & Deisenhofer, J. Molecular basis for LDL receptor recognition by PCSK9. Proc. Natl Acad. Sci. USA 105, 1820–1825 (2008).

    Article  CAS  Google Scholar 

  35. Stevens, J. et al. Structure and receptor specificity of the hemagglutinin from an H5N1 influenza virus. Science 312, 404–410 (2006).

    Article  CAS  Google Scholar 

  36. Xiao, T., Takagi, J., Coller, B.S., Wang, J.H. & Springer, T.A. Structural basis for allostery in integrins and binding to fibrinogen-mimetic therapeutics. Nature 432, 59–67 (2004).

    Article  CAS  Google Scholar 

  37. Hu, S.H., Latham, C.F., Gee, C.L., James, D.E. & Martin, J.L. Structure of the Munc18c/Syntaxin4 N-peptide complex defines universal features of the N-peptide binding mode of Sec1/Munc18 proteins. Proc. Natl Acad. Sci. USA 104, 8773–8778 (2007).

    Article  CAS  Google Scholar 

  38. Kothe, M. et al. Structure of the catalytic domain of human polo-like kinase 1. Biochemistry 46, 5960–5971 (2007).

    Article  CAS  Google Scholar 

  39. Yasui, N. et al. Structure of a receptor-binding fragment of reelin and mutational analysis reveal a recognition mechanism similar to endocytic receptors. Proc. Natl Acad. Sci. USA 104, 9988–9993 (2007).

    Article  CAS  Google Scholar 

  40. Pantazatos, D. et al. Rapid refinement of crystallographic protein construct definition employing enhanced hydrogen/deuterium exchange MS. Proc. Natl Acad. Sci. USA 101, 751–756 (2004).

    Article  CAS  Google Scholar 

  41. Spraggon, G. et al. On the use of DXMS to produce more crystallizable proteins: structures of the T. maritima proteins TM0160 and TM1171. Protein Sci. 13, 3187–3199 (2004).

    Article  CAS  Google Scholar 

  42. Maruyama, T. et al. Ebola virus can be effectively neutralized by antibody produced in natural human infection. J. Virol. 73, 6024–6030 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr Robyn Stanfield at The Scripps Research Institute for assistance with the Fluidigm microfluidic system and members of the Ollmann Saphire laboratory for advice and help. This study was supported by NIH NIAID operating grants (AI053423 and AI067927) and a Career Award by the Burroughs Wellcome Fund to E.O.S. and a fellowship to J.E.L. from the Canadian Institutes of Health Research. This is manuscript no. 19626 from The Scripps Research Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erica Ollmann Saphire.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, J., Fusco, M. & Saphire, E. An efficient platform for screening expression and crystallization of glycoproteins produced in human cells. Nat Protoc 4, 592–604 (2009). https://doi.org/10.1038/nprot.2009.29

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2009.29

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing