Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Purification of matrix metalloproteinases by column chromatography

Abstract

Matrix metalloproteinases (MMPs) are zinc endopeptidases composed of 23 members in humans, which belong to a subfamily of the metzincin superfamily. They play important roles in many pathophysiological events including development, organogenesis, angiogenesis, tissue remodeling and destruction, and cancer cell proliferation and progression by degradation of extracellular matrix (ECM) and non-ECM proteins and interaction with various molecules. Here, we present standard protocols for purification of native proMMPs (proMMP-1, -2, -3, -7, -9 and -10) and recombinant MT1-MMP (MMP-14) using conventional column chromatography. Purification steps comprise the initial common step [diethylaminoethyl (DEAE)-cellulose, Green A Dyematrex gel and gelatin–Sepharose columns], the second step for removal of nontarget proMMPs by immunoaffinity columns (anti-MMP-1 and/or anti-MMP-3 IgG–Sepharose columns) and the final step for further purification (IgG–Sepharose, DEAE-cellulose, Zn2+-chelate-Sepharose and/or gel filtration columns). Purified proMMPs and MMP are functionally active and suitable for biochemical analyses. The basic protocol for the purification from culture media takes 7–10 d.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The domain structures of secreted-type matrix metalloproteinases (MMPs) and membrane-anchored MMPs.
Figure 2: Purification steps of proMMPs and matrix metalloproteinase (MMP).
Figure 3: Green A Dyematrex gel chromatograph for the purification of proMMP-3.
Figure 4: SDS-PAGE analysis of the samples from each step for proMMP-9 purification.
Figure 5: Schematic illustration of a linear gradient mixer.

Similar content being viewed by others

References

  1. Egeblad, M. & Werb, Z. New functions for the matrix metalloproteinases in cancer progression. Nat. Rev. Cancer 2, 161–174 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Seiki, M. The cell surface: the stage for matrix metalloproteinase regulation of migration. Curr. Opin. Cell Biol. 14, 624–632 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Visse, R. & Nagase, H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ. Res. 92, 827–839 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Handsley, M.M. & Edwards, D.R. Metalloproteinases and their inhibitors in tumor angiogenesis. Int. J. Cancer 115, 849–860 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Okada, Y. Proteinases and matrix degradation. In Kelley's Textbook of Rheumatology 7th edition (eds. Harris, E.D. Jr., Budd, R.C., Genovese, M.C., Firestein, G.S. & Sargent J.S.) 63–81 (W.B. Saunders Company, Philadelphia, 2005).

    Google Scholar 

  6. Gross, J. & Lapiere, C.M. Collagenolytic activity in amphibian tissues: a tissue culture assay. Proc. Natl. Acad. Sci. USA 48, 1014–1022 (1962).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Baker, A.H., Edwards, D.R. & Murphy, G. Metalloproteinase inhibitors: biological actions and therapeutic opportunities. J. Cell Sci. 115, 3719–3727 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Pilcher, B.K. et al. The activity of collagenase-1 is required for keratinocyte migration on a type I collagen matrix. J. Cell Biol. 137, 1445–1457 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Krekoski, C.A., Neubauer, D., Graham, J.B. & Muir, D. Metalloproteinase-dependent predegeneration in vitro enhances axonal regeneration within acellular peripheral nerve grafts. J. Neurosci. 22, 10408–10415 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fukai, F. et al. Release of biological activities from quiescent fibronectin by a conformational change and limited proteolysis by matrix metalloproteinases. Biochemistry 34, 11453–11459 (1995).

    Article  CAS  PubMed  Google Scholar 

  11. Holliday, L.S. et al. Initiation of osteoclast bone resorption by interstitial collagenase. J. Biol. Chem. 272, 22053–22058 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Lochter, A. et al. Matrix metalloproteinase stromelysin-1 triggers a cascade of molecular alterations that leads to stable epithelial-to-mesenchymal conversion and a premalignant phenotype in mammary epithelial cells. J. Cell Biol. 139, 1861–1872 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hiraoka, N., Allen, E., Apel, I.J., Gyetko, M.R. & Weiss, S.J. Matrix metalloproteinases regulate neovascularization by acting as pericellular fibrinolysins. Cell 95, 365–377 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Chun, T.H. et al. A pericellular collagenase directs the 3-dimensional development of white adipose tissue. Cell 125, 577–591 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Fowlkes, J.L., Enghild, J.J., Suzuki, K. & Nagase, H. Matrix metalloproteinases degrade insulin-like growth factor-binding protein-3 in dermal fibroblast cultures. J. Biol. Chem. 269, 25742–25746 (1994).

    CAS  PubMed  Google Scholar 

  16. Thrailkill, K.M. et al. Characterization of insulin-like growth factor-binding protein 5-degrading proteases produced throughout murine osteoblast differentiation. Endocrinology 136, 3527–3533 (1995).

    Article  CAS  PubMed  Google Scholar 

  17. Whitelock, J.M., Murdoch, A.D., Iozzo, R.V. & Underwood, P.A. The degradation of human endothelial cell-derived perlecan and release of bound basic fibroblast growth factor by stromelysin, collagenase, plasmin, and heparanases. J. Biol. Chem. 271, 10079–10086 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Imai, K., Hiramatsu, A., Fukushima, D., Pierschbacher, M.D. & Okada, Y. Degradation of decorin by matrix metalloproteinases: identification of the cleavage sites, kinetic analyses and transforming growth factor-beta1 release. Biochem. J. 322, 809–814 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Manes, S. et al. Identification of insulin-like growth factor-binding protein-1 as a potential physiological substrate for human stromelysin-3. J. Biol. Chem. 272, 25706–25712 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Hashimoto, G. et al. Matrix metalloproteinases cleave connective tissue growth factor and reactivate angiogenic activity of vascular endothelial growth factor 165. J. Biol. Chem. 277, 36288–36295 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Shiomi, T. et al. Pericellular activation of proMMP-7 (promatrilysin-1) through interaction with CD151. Lab. Invest. 85, 1489–1506 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Overall, C.M. & Kleifeld, O. Tumour microenvironment—opinion: validating matrix metalloproteinases as drug targets and anti-targets for cancer therapy. Nat. Rev. Cancer 6, 227–239 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Ito, A. et al. Degradation of interleukin 1beta by matrix metalloproteinases. J. Biol. Chem. 271, 14657–14660 (1996).

    Article  CAS  PubMed  Google Scholar 

  24. Powell, W.C., Fingleton, B., Wilson, C.L., Boothby, M. & Matrisian, L.M. The metalloproteinase matrilysin proteolytically generates active soluble Fas ligand and potentiates epithelial cell apoptosis. Curr. Biol. 9, 1441–1447 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. McQuibban, G.A. et al. Inflammation dampened by gelatinase A cleavage of monocyte chemoattractant protein-3. Science 289, 1202–1206 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Noë, V. et al. Release of an invasion promoter E-cadherin fragment by matrilysin and stromelysin-1. J. Cell Sci. 114, 111–118 (2001).

    PubMed  Google Scholar 

  27. Kajita, M. et al. Membrane-type 1 matrix metalloproteinase cleaves CD44 and promotes cell migration. J. Cell Biol. 153, 893–904 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sheu, B.C. et al. A novel role of metalloproteinase in cancer-mediated immunosuppression. Cancer Res. 61, 237–242 (2001).

    CAS  PubMed  Google Scholar 

  29. Fiore, E., Fusco, C., Romero, P. & Stamenkovic, I. Matrix metalloproteinase 9 (MMP-9/gelatinase B) proteolytically cleaves ICAM-1 and participates in tumor cell resistance to natural killer cell-mediated cytotoxicity. Oncogene 21, 5213–5223 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Lynch, C.C. et al. Matrix metalloproteinase 7 mediates mammary epithelial cell tumorigenesis through the ErbB4 receptor. Cancer Res 67, 6760–6767 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Sawey, E.T., Johnson, J.A. & Crawford, H.C. Matrix metalloproteinase 7 controls pancreatic acinar cell transdifferentiation by activating the Notch signaling pathway. Proc. Natl. Acad. Sci. USA 104, 19327–19332 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yu, W.H., Woessner, J.F. Jr., McNeish, J.D. & Stamenkovic, I. CD44 anchors the assembly of matrilysin/MMP-7 with heparin-binding epidermal growth factor precursor and ErbB4 and regulates female reproductive organ remodeling. Genes Dev. 16, 307–323 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Labrecque, L. et al. Src-mediated tyrosine phosphorylation of caveolin-1 induces its association with membrane type 1 matrix metalloproteinase. J. Biol. Chem. 279, 52132–52140 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Nisato, R.E. et al. Dissecting the role of matrix metalloproteinases (MMP) and integrin alpha(v)beta3 in angiogenesis in vitro: absence of hemopexin C domain bioactivity, but membrane-Type 1-MMP and alpha(v)beta3 are critical. Cancer Res. 65, 9377–9387 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Fujita, Y. et al. Tetraspanin CD151 is expressed in osteoarthritic cartilage and is involved in pericellular activation of pro-matrix metalloproteinase 7 in osteoarthritic chondrocytes. Arthritis Rheum 54, 3233–3243 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Okada, Y., Nagase, H. & Harris, E.D. Jr. A metalloproteinase from human rheumatoid synovial fibroblasts that digests connective tissue matrix components. Purification and characterization. J. Biol. Chem. 261, 14245–14255 (1986).

    CAS  PubMed  Google Scholar 

  37. Okada, Y., Harris, E.D. Jr. & Nagase, H. The precursor of a metalloendopeptidase from human rheumatoid synovial fibroblasts. Purification and mechanisms of activation by endopeptidases and 4-aminophenylmercuric acetate. Biochem. J. 254, 731–741 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Okada, Y. et al. Matrix metalloproteinase 2 from human rheumatoid synovial fibroblasts. Purification and activation of the precursor and enzymic properties. Eur. J. Biochem. 194, 721–730 (1990).

    Article  CAS  PubMed  Google Scholar 

  39. Okada, Y. et al. Matrix metalloproteinase 9 (92-kDa gelatinase/type IV collagenase) from HT 1080 human fibrosarcoma cells. Purification and activation of the precursor and enzymic properties. J. Biol. Chem. 267, 21712–21719 (1992).

    CAS  PubMed  Google Scholar 

  40. Imai, K. et al. Membrane-type matrix metalloproteinase 1 is a gelatinolytic enzyme and is secreted in a complex with tissue inhibitor of metalloproteinases 2. Cancer Res. 56, 2707–2710 (1996).

    CAS  PubMed  Google Scholar 

  41. Ohuchi, E. et al. Membrane type 1 matrix metalloproteinase digests interstitial collagens and other extracellular matrix macromolecules. J. Biol. Chem. 272, 2446–2451 (1997).

    Article  CAS  PubMed  Google Scholar 

  42. Nakamura, H., Fujii, Y., Ohuchi, E., Yamamoto, E. & Okada, Y. Activation of the precursor of human stromelysin 2 and its interactions with other matrix metalloproteinases. Eur. J. Biochem. 253, 67–75 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. Shimada, T. et al. Characterization of a truncated recombinant form of human membrane type 3 matrix metalloproteinase. Eur. J. Biochem. 262, 907–914 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Imai, K. et al. Matrix metalloproteinase 7 (matrilysin) from human rectal carcinoma cells. Activation of the precursor, interaction with other matrix metalloproteinases and enzymic properties. J. Biol. Chem. 270, 6691–6697 (1995).

    Article  CAS  PubMed  Google Scholar 

  45. Watanabe, H., Nakanishi, I., Yamashita, K., Hayakawa, T. & Okada, Y. Matrix metalloproteinase-9 (92 kDa gelatinase/type IV collagenase) from U937 monoblastoid cells: correlation with cellular invasion. J. Cell Sci. 104, 991–999 (1993).

    CAS  PubMed  Google Scholar 

  46. Itoh, M. et al. Purification and refolding of recombinant human proMMP-7 (pro-matrilysin) expressed in Escherichia coli and its characterization. J. Biochem. 119, 667–673 (1996).

    Article  CAS  PubMed  Google Scholar 

  47. Kinoshita, T. et al. TIMP-2 promotes activation of progelatinase A by membrane-type 1 matrix metalloproteinase immobilized on agarose beads. J. Biol. Chem. 273, 16098–16103 (1998).

    Article  CAS  PubMed  Google Scholar 

  48. Conlon, J.M. Purification of naturally occurring peptides by reversed-phase HPLC. Nat. Protoc. 2, 191–197 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Shechter, D., Dormann, H.L., Allis, C.D. & Hake, S.B. Extraction, purification and analysis of histones. Nat. Protoc. 2, 1445–1457 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Shapiro, S.D. et al. Activation of the 92-kDa gelatinase by stromelysin and 4-aminophenylmercuric acetate. Differential processing and stabilization of the carboxyl-terminal domain by tissue inhibitor of metalloproteinases (TIMP). J. Biol. Chem. 270, 6351–6356 (1995).

    Article  CAS  PubMed  Google Scholar 

  51. Shipley, J.M. et al. The structural basis for the elastolytic activity of the 92-kDa and 72-kDa gelatinases. Role of the fibronectin type II-like repeats. J. Biol. Chem. 271, 4335–4341 (1996).

    Article  CAS  PubMed  Google Scholar 

  52. Stricklin, G.P., Bauer, E.A., Jeffrey, J.J. & Eisen, A.Z. Human skin collagenase: isolation of precursor and active forms from both fibroblast and organ cultures. Biochemistry 16, 1607–1615 (1977).

    Article  CAS  PubMed  Google Scholar 

  53. Harayama, T. et al. Shedding of membrane type 1 matrix metalloproteinase in a human breast carcinoma cell line. Jpn. J. Cancer Res. 90, 942–950 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Templeton, N.S. et al. Cloning and characterization of human tumor cell interstitial collagenase. Cancer Res. 50, 5431–5437 (1990).

    CAS  PubMed  Google Scholar 

  55. Muir, D. & Manthorpe, M. Stromelysin generates a fibronectin fragment that inhibits Schwann cell proliferation. J. Cell Biol. 116, 177–185 (1992).

    Article  CAS  PubMed  Google Scholar 

  56. Chevallet, M., Luche, S. & Rabilloud, T. Silver staining of proteins in polyacrylamide gels. Nat. Protoc. 1, 1852–1858 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Moutsiakis, D., Mancuso, P., Krutzsch, H., Stetler-Stevenson, W. & Zucker, S. Characterization of metalloproteinases and tissue inhibitors of metalloproteinases in human plasma. Connect. Tissue Res. 28, 213–230 (1992).

    Article  CAS  PubMed  Google Scholar 

  58. Birkedal-Hansen, H. Catabolism and turnover of collagens: collagenases. Methods Enzymol. 144, 140–171 (1987).

    Article  CAS  PubMed  Google Scholar 

  59. Nagase, H. Human stromelysins 1 and 2. Methods Enzymol. 248, 449–470 (1995).

    Article  CAS  PubMed  Google Scholar 

  60. Nakamura, H. et al. Brevican is degraded by matrix metalloproteinases and aggrecanase-1 (ADAMTS4) at different sites. J. Biol. Chem. 275, 38885–38890 (2000).

    Article  CAS  PubMed  Google Scholar 

  61. Ward, R.V., Hembry, R.M., Reynolds, J.J. & Murphy, G. The purification of tissue inhibitor of metalloproteinases-2 from its 72 kDa progelatinase complex. Demonstration of the biochemical similarities of tissue inhibitor of metalloproteinases-2 and tissue inhibitor of metalloproteinases-1. Biochem. J. 278, 179–187 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Rozanov, D.V. & Strongin, A.Y. Membrane type-1 matrix metalloproteinase functions as a proprotein self-convertase. Expression of the latent zymogen in Pichia pastoris, autolytic activation, and the peptide sequence of the cleavage forms. J. Biol. Chem. 278, 8257–8260 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to all the previous and current members of Y.O.'s lab who contributed to the development of these techniques. Y.O. was supported by the grant-in-aid from the Ministry of Education, Science and Culture of Japan (19109004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasunori Okada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Imai, K., Okada, Y. Purification of matrix metalloproteinases by column chromatography. Nat Protoc 3, 1111–1124 (2008). https://doi.org/10.1038/nprot.2008.74

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2008.74

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing