Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

The preparation and development of cellular membrane affinity chromatography columns

Abstract

Cellular membrane affinity chromatography is a technique that is based on the immobilization of a target trans-membrane protein onto a stationary phase. The target protein is isolated by homogenization and solubilization of a source (e.g., cell line) followed by immobilization on either the immobilized artificial membrane-phosphatidyl choline (IAM-PC) stationary phase or the surface of an open tubular capillary during a dialysis step. The procedure typically takes 3–4 d for the IAM-PC stationary phase, whereas the open-tubular method takes an extra week for the preparation of the capillary. The resulting columns can then be used to characterize binding sites on the target protein through frontal chromatographic and/or nonlinear chromatographic studies using a wide variety of ligands including small molecules and polypeptides. The columns have been used in drug discovery as well as in the screening of tobacco smoke condensates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Typical Frontal and Non-Linear chromatograms.
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Ng, E.S.M., Chora, N.W.C., Lewis, D.F., Hindsgaul, O. & Schriemer, D. Frontal affinity chromatography-mass spectrometry. Nat. Protoc. 2, 1907–1917 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Chaiken, I.M. Analytical affinity chromatography in studies of molecular recognition in biology: a review. J. Chromatogr. 376, 11–32 (1986).

    Article  CAS  PubMed  Google Scholar 

  3. Wade, J.L., Bergold, A.F. & Carr, P.W. Theoretical description of nonlinear chromatography, with applications to physicochemical measurements in affinity chromatography and implications for preparative-scale separations. Anal. Chem. 59, 1286–1295 (1987).

    Article  CAS  Google Scholar 

  4. Kim, H.S., Kye, Y.S. & Hage, D.S. Development and evaluation of N-hydroxysuccinimide-activated silica for immobilizing human serum albumin in liquid chromatography columns. J. Chromatogr. A. 1049, 51–61 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Moaddel, R. et al. Automated ligand fishing using HSA-coated magnetic beads. Anal. Chem. 79, 5414–5417 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Brekkan, E., Lundqvist, A. & Lundahl, P. Immobilized membrane vesicle or proteoliposome affinity chromatography. Frontal analysis of interactions of cytochalasin B and D-glucose with the human red cell glucose transporter. Biochemistry 35, 12141–12145 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Yang, Q. & Lundahl, P. Immobilized proteoliposome affinity chromatography for quantitative analysis of specific interactions between solutes and membrane proteins. interaction of cytochalasin B and D-glucose with the glucose transporter Glut1. Biochemistry 34, 7289–7294 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. Zhang, Y., Xiao, Y.X., Kellar, K.J. & Wainer, I.W. Immobilized nicotinic receptor stationary phase for on-line liquid chromatographic determination of drug-receptor affinities. Anal. Biochem. 264, 22–25 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Pidgeon, C., Marcus, C. & Alvarez, F. Applications of Enzyme Biotechnology, (eds. Baldwin, T.O. & Kelly, J.W.) (Plenum Press, New York, 1992).

    Google Scholar 

  10. Besanger, T.R., Hodgson, R.J., Green, J.R.A. & Brennan, J.D. Immobilized enzyme reactor chromatography: optimization of protein retention and enzyme activity in monolithic silica stationary phases. Analytica. Chimica. Acta. 564, 106–115 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Beigi, F. & Wainer, I.W. Syntheses of immobilized G protein-coupled receptor chromatographic stationary phases: characterization of immobilized mu and kappa opioid receptors. Anal. Chem. 75, 4480–4485 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Beigi, F., Chakir, K., Xiao, R.-P. & Wainer, I.W. G-protein-coupled receptor chromatographic stationary phases. 2. Ligand-induced conformational mobility in an immobilized beta2-adrenergic receptor. Anal. Chem. 76, 7187–7193 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Moaddel, R., Calleri, E., Massolini, G., Frazier, C. & Wainer, I.W. The synthesis and initial characterization of an immobilized purinergic receptor (P2Y1) liquid chromatography stationary phase for on line screening. Anal. Biochem. 364, 216–218 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Moaddel, R., Jozwiak, K., Whittington, K.C. & Wainer, I.W. The on-line determination of agonists/ competitive antagonists and non-competitive inhibitors of the α3β2, α3β4, α4β2, and α4β4 -nicotinic acetylcholine receptors using immobilized receptor-based liquid chromatographic stationary phases. Anal. Chem. 77, 895–901 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Zhang, Y., Leonessa, F., Clarke, R. & Wainer, I.W. Development of an immobilized P-glycoprotein stationary phase for on-line liquid chromatographic determination of drug-binding affinities. J. Chromatogr. B. 739, 33–37 (2000).

    Article  CAS  Google Scholar 

  16. Moaddel, R., Yamaguchi, R., Ho, P., Patel, S. & Wainer, I.W. Development and characterization of the human organic cation transporter column. J. Chrom. B. 818, 263–268 (2005).

    Article  CAS  Google Scholar 

  17. Kimura, T., Perry, J., Anzai, N., Pritchard, J. & Moaddel, R. Development and characterization of immobilized human organic anion transporter based liquid chromatographic stationary phase: hOAT1 and hOAT2. J. Chrom. B. 859, 267–271 (2007).

    Article  CAS  Google Scholar 

  18. Moaddel, R., Cloix, J.F., Ertem, G. & Wainer, I.W. Multiple receptor liquid chromatographic stationary phases: development of a co-immobilized nicotinic receptor, GABA receptor and NMDA receptor stationary phase. Pharm. Res. 19, 104–107 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Moaddel, R., Bullock, P. & Wainer, I.W. Development and characterization of an open tubular column containing immobilized P-glycoprotein for rapid on-line screening for P-glycoprotein substrates. J. Chrom. B. Analyt. Technol. Biomed. Life Sci. 799, 255–263 (2004).

    Article  CAS  Google Scholar 

  20. Maciuk, A., Moaddel, R., Haginaka, J. & Wainer, I.W. Screening of tobacco smoke condensate for nicotinic acetylcholine receptor ligands using cellular membrane affinity chromatography columns and missing peak chromatography. J. Pharm. Biomed. Anal. 48, 238–246 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Moaddel, R. et al. On-line screening of conformationally constrained nicotines and anabasines for agonist activity at the α3β4 and α4β2 -nicotinic acetylcholine receptors using immobilized receptor based liquid chromatographic stationary phases. J. Chrom. B. 813, 235–240 (2004).

    Article  CAS  Google Scholar 

  22. Moaddel, R., Jozwiak, K. & Wainer, I.W. Allosteric modifiers of neuronal nicotinic acetylcholine receptors: new methods, new oppurtunities. Med. Res. Rev. 27, 723–753 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Moaddel, R., Hamid, R., Patel, S., Wainer, I.W. & Bullock, P. Comparison of an open tubular column containing immobilized P-glycoprotein with Caco-2 cell monolayers for the purpose of investigating interactions between drug candidates and Pgp. Anal. Chimica. Acta. 578, 25–30 (2006).

    Article  CAS  Google Scholar 

  24. Moaddel, R., Ravichandran, S., Bighi, F., Yamaguchi, R. & Wainer, I.W. The Prediction and description of stereoselective binding to the human organic cation transporter (hOCT1). Brit. J. Pharm. 151, 1305–1314 (2007).

    Article  CAS  Google Scholar 

  25. Jozwiak, K., Hernandez, S.C., Kellar, K.J. & Wainer, I.W. Enantioselective interactions of dextromethorphan and levomethorphan with the α3β4-nicotinic acetylcholine receptor: comparison of chromatographic and functional data. J. Chromatogr. B. 797, 373–379 (2003).

    Article  CAS  Google Scholar 

  26. Jozwiak, K., Ravichandran, S., Collins, J., Moaddel, R. & Wainer, I.W. Interaction of noncompetitive inhibitors of the α3β2 nicotinic acetylcholine receptor investigated by affinity chromatography and molecular docking. J. Med. Chem. 50, 6279–6283 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Kitabatake, T. et al. Characterization of a multiple ligand-gated ion channel cellular membrane affinity chromatography (CMAC) column and identification of endogenously expressed receptors in astrocytoma cell lines. Anal. Chem. 80, 8673–8680 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Moaddel, R. et al. Initial synthesis and characterization of an a7 nicotinic receptor cellular membrane affinity chromatography column: effect of receptor subtype and cell type. Anal. Chem. 80, 48–54 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Leonessa, F. et al. Effect of tamoxifen on the multidrug-resistant phenotype in human breast cancer cells: isobologram, drug accumulation, and M(r) 170,000 glycoprotein (gp170) binding studies. Cancer Res. 54, 441–447 (1994).

    CAS  PubMed  Google Scholar 

  30. Walsch, C.T. Posttranslational Modifications of Proteins: Expanding Nature's Inventory (Roberts and Co., Greenwood, CO, USA, 2007).

    Google Scholar 

  31. Wade, L., Bergold, A.F. & Carr, P.W. Theoretical description of nonlinear chromatography, with applications to physicochemical measurements in affinity chromatography and implications for preparative-scale separations. Anal. Chem. 59, 1286–1295 (1986).

    Article  Google Scholar 

  32. Baynham, M.T., Patel, S., Moaddel, R. & Wainer, I.W. Multidimensional on-line screening for ligands to the α3β4 neuronal nicotinic acetylcholine receptor using an immobilized nicotinic receptor liquid chromatographic stationary phase. J. Chrom. B. 772, 155–61 (2002).

    Article  CAS  Google Scholar 

  33. Moaddel, R. et al. utomated ligand fishing using HSA-coated magnetic beads. Anal. Chem. 79, 5414–5417 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Marszall, M. et al. Ligand and protein fishing with heat shock protein 90 coated magnetic beads. Anal. Chem. 80, 7571–7575 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cleland, J.L. et al. A specifc molar ratio of stabilizer to protein is required for storage stability of a lyophilized monoclonal antibody. J. Pharm. Sci. 90, 310–321 (2000).

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the Intramural Research Program of the National Institute on Aging/NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruin Moaddel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moaddel, R., Wainer, I. The preparation and development of cellular membrane affinity chromatography columns. Nat Protoc 4, 197–205 (2009). https://doi.org/10.1038/nprot.2008.225

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2008.225

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing