Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

A protocol for unraveling gene regulatory networks

Abstract

Regulatory genes form large networks that are fundamental to the developmental program. The protocol presented here describes a general approach to assemble maps of gene regulatory networks (GRNs). It combines high-resolution spatio-temporal profiling of regulatory genes, strategies to perturb gene expression and quantification of perturbation effects on other genes of the network. The map of the GRN emerges by integration of these data sources and explains developmental events in terms of functional linkages between regulatory genes. This protocol has been successfully applied to regulatory processes in the sea urchin embryo, but it is generally applicable to any developmental process that relies primarily on transcriptional regulation. Unraveling the GRN for a whole tissue or organ is a challenging undertaking and, depending on the complexity, may take anywhere from months to years to complete.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: General strategy for analysis of GRNs.
Figure 2: Perturbation experiments for network assembly.

Similar content being viewed by others

References

  1. Davidson, E.H. The Regulatory Genome: Gene Regulatory Networks in Development and Evolution (Academic Press, San Diego, CA, 2006).

  2. Ben-Tabou de-Leon, S. & Davidson, E.H. Gene regulation: gene control network in development. Annu. Rev. Biophys. Biomol. Struct. 36, 191 (2007).

    Article  CAS  Google Scholar 

  3. Materna, S.C. & Davidson, E.H. Logic of gene regulatory networks. Curr. Opin. Biotechnol. 18, 351–354 (2007).

    Article  CAS  Google Scholar 

  4. Davidson, E.H. et al. A provisional regulatory gene network for specification of endomesoderm in the sea urchin embryo. Dev. Biol. 246, 162–190 (2002).

    Article  CAS  Google Scholar 

  5. Ben-Tabou de-Leon, S. & Davidson, E.H. Deciphering the underlying mechanism of specification and differentiation: the sea urchin gene regulatory network. Sci STKE 14, pe47 (2006).

    Google Scholar 

  6. Oliveri, P. & Davidson, E.H. Development. Built to run, not fail. Science 315, 1510–1511 (2007).

    Article  CAS  Google Scholar 

  7. Davidson, E.H. et al. A genomic regulatory network for development. Science 295, 1669–1678 (2002).

    Article  CAS  Google Scholar 

  8. Oliveri, P., Carrick, D.M. & Davidson, E.H. A regulatory gene network that directs micromere specification in the sea urchin embryo. Dev. Biol. 246, 209–228 (2002).

    Article  CAS  Google Scholar 

  9. Oliveri, P., Tu, Q. & Davidson, E.H. Global regulatory logic for specification of an embryonic cell lineage. Proc. Natl. Acad. Sci. USA 105, 5955–5962 (2008).

    Article  CAS  Google Scholar 

  10. Levine, M. & Davidson, E.H. Gene regulatory networks for development. Proc. Natl. Acad. Sci. USA 102, 4936–4942 (2005).

    Article  CAS  Google Scholar 

  11. Imai, K.S., Levine, M., Satoh, N. & Satou, Y. Regulatory blueprint for a chordate embryo. Science 312, 1183–1187 (2006).

    Article  CAS  Google Scholar 

  12. Sauka-Spengler, T., Meulemans, D., Jones, M. & Bronner-Fraser, M. Ancient evolutionary origin of the neural crest gene regulatory network. Dev. Cell. 13, 405–420 (2007).

    Article  CAS  Google Scholar 

  13. Meulemans, D. & Bronner-Fraser, M. Gene-regulatory interactions in neural crest evolution and development. Dev. Cell. 7, 291–299 (2004).

    Article  CAS  Google Scholar 

  14. Koide, T., Hayata, T. & Cho, K.W. Xenopus as a model system to study transcriptional regulatory networks. Proc. Natl. Acad. Sci. USA 102, 4943–4948 (2005).

    Article  CAS  Google Scholar 

  15. Vokes, S.A. et al. Genomic characterization of Gli-activator targets in sonic hedgehog-mediated neural patterning. Development 134, 1977–1989 (2007).

    Article  CAS  Google Scholar 

  16. Johnston, R.J. Jr., Chang, S., Etchberger, J.F., Ortiz, C.O. & Hobert, O. MicroRNAs acting in a double-negative feedback loop to control a neuronal cell fate decision. Proc. Natl. Acad. Sci. USA 102, 12449–12454 (2005).

    Article  CAS  Google Scholar 

  17. Sandmann, T. et al. A core transcriptional network for early mesoderm development in Drosophila melanogaster . Genes Dev. 21, 436–449 (2007).

    Article  CAS  Google Scholar 

  18. Smith, J. A protocol describing the principles of cis-regulatory analysis in the sea urchin. Nat. Protoc. 3, 1–9 (2008).

    Article  CAS  Google Scholar 

  19. Revilla-i-Domingo, R. & Davidson, E.H. Developmental gene network analysis. Int. J. Dev. Biol. 47, 695–703 (2003).

    CAS  PubMed  Google Scholar 

  20. Livingston, B.T. et al. A genome-wide analysis of biomineralization-related proteins in the sea urchin Strongylocentrotus purpuratus . Dev. Biol. 300, 335–348 (2006).

    Article  CAS  Google Scholar 

  21. Calestani, C., Rast, J.P. & Davidson, E.H. Isolation of pigment cell specific genes in the sea urchin embryo by differential macroarray screening. Development 130, 4587–4596 (2003).

    Article  CAS  Google Scholar 

  22. Howard-Ashby, M. et al. Identification and characterization of homeobox transcription factor genes in Strongylocentrotus purpuratus, and their expression in embryonic development. Dev. Biol. 300, 74–89 (2006).

    Article  CAS  Google Scholar 

  23. Howard-Ashby, M. et al. Gene families encoding transcription factors expressed in early development of Strongylocentrotus purpuratus . Dev. Biol. 300, 90–107 (2006).

    Article  CAS  Google Scholar 

  24. Materna, S.C., Howard-Ashby, M., Gray, R.F. & Davidson, E.H. The C2H2 zinc finger genes of Strongylocentrotus purpuratus and their expression in embryonic development. Dev. Biol. 300, 108–120 (2006).

    Article  CAS  Google Scholar 

  25. Rizzo, F., Fernandez-Serra, M., Squarzoni, P., Archimandritis, A. & Arnone, M.I. Identification and developmental expression of the ets gene family in the sea urchin (Strongylocentrotus purpuratus). Dev. Biol. 300, 35–48 (2006).

    Article  CAS  Google Scholar 

  26. Tu, Q., Brown, C.T., Davidson, E.H. & Oliveri, P. Sea urchin Forkhead gene family: phylogeny and embryonic expression. Dev. Biol. 300, 49–62 (2006).

    Article  CAS  Google Scholar 

  27. Rast, J.P., Cameron, R.A., Poustka, A.J. & Davidson, E.H. Brachyury target genes in the early sea urchin embryo isolated by differential macroarray screening. Dev. Biol. 246, 191–208 (2002).

    Article  CAS  Google Scholar 

  28. Samanta, M.P. et al. The transcriptome of the sea urchin embryo. Science 314, 960–962 (2006).

    Article  CAS  Google Scholar 

  29. Stolc, V. et al. A gene expression map for the euchromatic genome of Drosophila melanogaster . Science 306, 655–660 (2004).

    Article  CAS  Google Scholar 

  30. Arbeitman, M.N. et al. Gene expression during the life cycle of Drosophila melanogaster . Science 27, 2270–2275 (2002).

    Article  Google Scholar 

  31. Mortazavi, A., Williams, B.A., McCue, K., Schaeffer, L. & Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 5, 621–628 (2008).

    Article  CAS  Google Scholar 

  32. Yuh, C.H., Bolouri, H. & Davidson, E.H. Cis-regulatory logic in the endo16 gene: switching from a specification to a differentiation mode of control. Development 128, 617–629 (2001).

    CAS  PubMed  Google Scholar 

  33. Wikramanayake, A.H. et al. An ancient role for nuclear beta-catenin in the evolution of axial polarity and germ layer segregation. Nature 426, 446–450 (2003).

    Article  CAS  Google Scholar 

  34. Henry, J.Q., Perry, K.J., Wever, J., Seaver, E. & Martindale, M.Q. Beta-catenin is required for the establishment of vegetal embryonic fates in the nemertean, Cerebratulus lacteus . Dev. Biol (2008).

  35. Logan, C.Y., Miller, J.R., Ferkowicz, M.J. & McClay, D.R. Nuclear beta-catenin is required to specify vegetal cell fates in the sea urchin embryo. Development 126, 345–357 (1999).

    CAS  PubMed  Google Scholar 

  36. Range, R.C., Venuti, J.M. & McClay, D.R. LvGroucho and nuclear beta-catenin functionally compete for Tcf binding to influence activation of the endomesoderm gene regulatory network in the sea urchin embryo. Dev. Biol. 279, 252–267 (2005).

    Article  CAS  Google Scholar 

  37. Barolo, S., Stone, T., Bang, A.G. & Posakony, J.W. Default repression and Notch signaling: Hairless acts as an adaptor to recruit the corepressors Groucho and dCtBP to suppressor of Hairless. Genes Dev. 16, 1964–1976 (2002).

    Article  CAS  Google Scholar 

  38. Revilla-i-Domingo, R., Oliveri, P. & Davidson, E.H. A missing link in the sea urchin embryo gene regulatory network: hesC and the double-negative specification of micromeres. Proc. Natl. Acad. Sci. USA 104, 12383–12388 (2007).

    Article  CAS  Google Scholar 

  39. Summerton, J. & Weller, D. Morpholino antisense oligomers: design, preparation, and properties. Antisense Nucleic Acid Drug Dev. 7, 187–195 (1997).

    Article  CAS  Google Scholar 

  40. Draper, B.W., Morcos, P.A. & Kimmel, C.B. Inhibition of zebrafish fgf8 Pre-mRNA splicing with morpholino oligos: a quantifiable method for gene knockdown. Genesis 30, 154–156 (2001).

    Article  CAS  Google Scholar 

  41. Oliveri, P., Walton, K.D., Davidson, E.H. & McClay, D.R. Repression of mesodermal fate by foxa, a key endoderm regulator of the sea urchin embryo. Development 133, 4173–4181 (2006).

    Article  CAS  Google Scholar 

  42. Angerer, L.M. et al. Sea urchin goosecoid function links fate specification along the animal-vegetal and oral-aboral embryonic axes. Development 128, 4393–4404 (2001).

    CAS  PubMed  Google Scholar 

  43. Yaguchi, S., Yaguchi, J., Angerer, R.C. & Angerer, L.M. A Wnt-FoxQ2-Nodal pathway links primary and secondary axis specification in sea urchin embryos. Dev. Cell 14, 97–107 (2008).

    Article  CAS  Google Scholar 

  44. Li, X., Wikramanayake, A.H. & Klein, W.H. Requirement of SpOtx in cell fate decisions in the sea urchin embryo and possible role as a mediator of beta-catenin signaling. Dev. Biol. 212, 425–439 (1999).

    Article  CAS  Google Scholar 

  45. Beh, J., Shi, W., Levine, M., Davidson, B. & Christiaen, L. FoxF is essential for FGF-induced migration of heart progenitor cells in the ascidian Ciona intestinalis . Development 134, 3297–3305 (2007).

    Article  CAS  Google Scholar 

  46. Coffman, J.A. & Davidson, E.H. Oral-aboral axis specification in the sea urchin embryo. I. Axis entrainment by respiratory asymmetry. Dev. Biol. 230, 18–28 (2001).

    Article  CAS  Google Scholar 

  47. Hall, D.B. & Struhl, K. The VP16 activation domain interacts with multiple transcriptional components as determined by protein–protein cross-linking in vivo . J. Biol. Chem. 277, 46043–46050 (2002).

    Article  CAS  Google Scholar 

  48. Sherwood, D.R. & McClay, D.R. LvNotch signaling mediates secondary mesenchyme specification in the sea urchin embryo. Development 126, 1703–1713 (1999).

    CAS  PubMed  Google Scholar 

  49. Fernandez-Serra, M., Consales, C., Livigni, A. & Arnone, M.I. Role of the ERK-mediated signaling pathway in mesenchyme formation and differentiation in the sea urchin embryo. Dev. Biol. 268, 384–402 (2004).

    Article  CAS  Google Scholar 

  50. Clyde, D.E. et al. A self-organizing system of repressor gradients establishes segmental complexity in Drosophila . Nature 426, 849–853 (2003).

    Article  CAS  Google Scholar 

  51. Nemer, M., Rondinelli, E., Infante, D. & Infante, A.A. Polyubiquitin RNA characteristics and conditional induction in sea urchin embryos. Dev. Biol. 145, 255–265 (1991).

    Article  CAS  Google Scholar 

  52. Wang, D.G., Britten, R.J. & Davidson, E.H. Maternal and embryonic provenance of a sea urchin embryo transcription factor, SpZ12-1. Mol. Mar. Biol. Biotechnol. 4, 148–153 (1995).

    CAS  PubMed  Google Scholar 

  53. Wong, M.L. & Medrano, J.F. Real-time PCR for mRNA quantitation. Biotechniques 39, 75–85 (2005).

    Article  CAS  Google Scholar 

  54. Baugh, L.R. et al. The homeodomain protein PAL-1 specifies a lineage-specific regulatory network in the C. elegans embryo. Development 132, 1843–1854 (2005).

    Article  CAS  Google Scholar 

  55. Geiss, G.K. et al. The NanoString nCounter System: a sensitive, digital technology for direct multiplexed measurement of gene expression. Nat. Biotechnol. 36, 317–325 (2008).

    Article  Google Scholar 

  56. Bolouri, H. & Davidson, E.H. Transcriptional regulatory cascades in development: initial rates, not steady state, determine network kinetics. Proc. Natl. Acad. Sci. USA 100, 9371–9376 (2003).

    Article  CAS  Google Scholar 

  57. Longabaugh, W.J., Davidson, E.H. & Bolouri, H. Computational representation of developmental genetic regulatory networks. Dev. Biol. 283, 1–16 (2005).

    Article  CAS  Google Scholar 

  58. Alon, U. Network motifs: theory and experimental approaches. Nat. Rev. Genet. 8, 450–461 (2007).

    Article  CAS  Google Scholar 

  59. Jaffe, L.A. & Terasaki, M. Quantitative microinjection of oocytes, eggs, and embryos. Methods Cell Biol. 74, 219–242 (2004).

    Article  Google Scholar 

  60. Bottger, S.A., Walker, C.W. & Unuma, T. Care and maintenance of adult echinoderms. Methods Cell Biol. 74, 17–38 (2004).

    Article  Google Scholar 

  61. Ransick, A. Detection of mRNA by in situ hybridization and RT-PCR. Methods Cell Biol. 74, 601–620 (2004).

    Article  CAS  Google Scholar 

  62. Rast, J.P. et al. Recovery of developmentally defined gene sets from high-density cDNA macroarrays. Dev Biol. 228, 270–286 (2000).

    Article  CAS  Google Scholar 

  63. Minokawa, T., Rast, J.P., Arenas-Mena, C., Franco, C.B. & Davidson, E.H. Expression patterns of four different regulatory genes that function during sea urchin development. Gene Expr. Patterns 4, 449–456 (2004).

    Article  CAS  Google Scholar 

  64. Hinman, V.F., Nguyen, A.T., Cameron, R.A. & Davidson, E.H. Developmental gene regulatory network architecture across 500 million years of echinoderm evolution. Proc. Natl. Acad. Sci. USA 100, 13356–13361 (2003).

    Article  CAS  Google Scholar 

  65. Minokawa, T., Wikramanayake, A.H. & Davidson, E.H. cis-Regulatory inputs of the wnt8 gene in the sea urchin endomesoderm network. Dev. Biol. 288, 545–558 (2005).

    Article  CAS  Google Scholar 

  66. Ransick, A. & Davidson, E.H. cis-regulatory processing of Notch signaling input to the sea urchin glial cells missing gene during mesoderm specification. Dev. Biol. 297, 587–602 (2006).

    Article  CAS  Google Scholar 

  67. Revilla-i-Domingo, R., Minokawa, T. & Davidson, E.H. R11: a cis-regulatory node of the sea urchin embryo gene network that controls early expression of SpDelta in micromeres. Dev. Biol. 274, 438–451 (2004).

    Article  CAS  Google Scholar 

  68. Yuh, C.H., Dorman, E.R., Howard, M.L. & Davidson, E.H. An otx cis-regulatory module: a key node in the sea urchin endomesoderm gene regulatory network. Dev. Biol. 269, 536–551 (2004).

    Article  CAS  Google Scholar 

  69. Oliveri, P., Davidson, E.H. & McClay, D.R. Activation of pmar1 controls specification of micromeres in the sea urchin embryo. Dev. Biol. 258, 32–43 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Eric Davidson in whose lab this protocol was established for many interesting and insightful discussions. Many thanks also to Jonathan Rast, Isabelle Peter, Joel Smith and Andy Cameron for their help in preparing this manuscript. We are grateful for helpful suggestions from our anonymous reviewers. This research was supported by NIH grant HD-37105.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Stefan C Materna or Paola Oliveri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Materna, S., Oliveri, P. A protocol for unraveling gene regulatory networks. Nat Protoc 3, 1876–1887 (2008). https://doi.org/10.1038/nprot.2008.187

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2008.187

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing