Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Methods for generating and colonizing gnotobiotic zebrafish

Abstract

Vertebrates are colonized at birth by complex and dynamic communities of microorganisms that can contribute significantly to host health and disease. The ability to raise animals in the absence of microorganisms has been a powerful tool for elucidating the relationships between animal hosts and their microbial residents. The optical transparency of the developing zebrafish and relative ease of generating germ-free (GF) zebrafish make it an attractive model organism for gnotobiotic research. Here we provide a protocol for generating zebrafish embryos; deriving and rearing GF zebrafish; and colonizing zebrafish with microorganisms. Using these methods, we typically obtain 80–90% sterility rates in our GF derivations with 90% survival in GF animals and 50–90% survival in colonized animals through larval stages. Obtaining embryos for derivation requires approximately 1–2 h, with a 3- to 8-h incubation period before derivation. Derivation of GF animals takes 1–1.5 h, and daily maintenance requires 1–2 h.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Schematic diagram of zebrafish laparotomy.
Figure 3: Overview of gnotobiotic zebrafish husbandry.
Figure 4: Comparison of colonization methods in zebrafish.

Similar content being viewed by others

References

  1. Lederberg, J. Infectious history. Science 288, 287–293 (2000).

    Article  CAS  Google Scholar 

  2. Dethlefsen, L., McFall-Ngai, M. & Relman, D.A. An ecological and evolutionary perspective on human–microbe mutualism and disease. Nature 449, 811–818 (2007).

    Article  CAS  Google Scholar 

  3. Turnbaugh, P.J. et al. The human microbiome project. Nature 449, 804–810 (2007).

    Article  CAS  Google Scholar 

  4. Bäckhed, F., Ley, R.E., Sonnenburg, J.L., Peterson, D.A. & Gordon, J.I. Host–bacterial mutualism in the human intestine. Science 307, 1915–1920 (2005).

    Article  Google Scholar 

  5. Smith, K., McCoy, K.D. & Macpherson, A.J. Use of axenic animals in studying the adaptation of mammals to their commensal intestinal microbiota. Semin. Immunol. 19, 59–69 (2007).

    Article  CAS  Google Scholar 

  6. Cheesman, S.E. & Guillemin, K. We know you are in there: conversing with the indigenous gut microbiota. Res. Microbiol. 158, 2–9 (2007).

    Article  Google Scholar 

  7. Macdonald, T.T. & Monteleone, G. Immunity, inflammation, and allergy in the gut. Science 307, 1920–1925 (2005).

    Article  CAS  Google Scholar 

  8. Sartor, R.B. Microbial influences in inflammatory bowel diseases. Gastroenterology 134, 577–594 (2008).

    Article  CAS  Google Scholar 

  9. McGarr, S.E., Ridlon, J.M. & Hylemon, P.B. Diet, anaerobic bacterial metabolism, and colon cancer: a review of the literature. J. Clin. Gastroenterol. 39, 98–109 (2005).

    PubMed  Google Scholar 

  10. Ley, R.E., Turnbaugh, P.J., Klein, S. & Gordon, J.I. Microbial ecology: human gut microbes associated with obesity. Nature 444, 1022–1023 (2006).

    Article  CAS  Google Scholar 

  11. Turnbaugh, P.J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027–1131 (2006).

    Article  Google Scholar 

  12. Pasteur, L. Observations relatives à la note de M. Duclaux. Compt. Rend. Acad. Sci. 100, 68 (1885).

    Google Scholar 

  13. Nuttal, G. & Thierfelder, H. Thierisches Leben ohne Bacterien im Verdauungskanal. Z. Physiol. Chem. 21, 109–121 (1896).

    Article  Google Scholar 

  14. Gordon, H.A. The germ-free animal. Its use in the study of 'physiologic' effects of the normal microbial flora on the animal host. Am. J. Dig. Dis. 5, 841–867 (1960).

    Article  CAS  Google Scholar 

  15. Baker, J.A. & Ferguson, M.S. Growth of Platyfish (Platypoecilus maculatus) free from bacteria and other microorganisms. Proc. Soc. Exp. Biol. Med. 51, 116–119 (1942).

    Article  Google Scholar 

  16. Wostmann, B.S. The germfree animal in nutritional studies. Annu. Rev. Nutr. 1, 257–279 (1981).

    Article  CAS  Google Scholar 

  17. Shaw, E. Potentially simple technique for rearing 'germ-free' fish. Science 125, 987–988 (1957).

    Article  CAS  Google Scholar 

  18. Trust, T.J. Sterility of salmonid roe and practicality of hatching gnotobiotic salmonid fish. Appl. Microbiol. 28, 340–341 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Lesel, R. & Lesel, M. Obtention d'alevins non vésiculés axéniques de salmonides. Ann. Hydrobiol. 7, 21–25 (1976).

    Google Scholar 

  20. Lesel, R. & Dubourget, P. Obtention de poissons ovovivipares axéniques: amélioration technique. Ann. Zool. Ecol. Anim. 11, 389–395 (1979).

    Google Scholar 

  21. Battalora, M.S., Ellender, R.D. & Martin, B.J. Gnotobiotic maintenance of Sheepshead minnow larvae. Prog. Fish-Cult. 47, 122–125 (1985).

    Article  Google Scholar 

  22. Grunwald, D.J. & Eisen, J.S. Headwaters of the zebrafish—emergence of a new model vertebrate. Nat. Rev. Genet. 3, 717–724 (2002).

    Article  CAS  Google Scholar 

  23. Lieschke, G.J. & Currie, P.D. Animal models of human disease: zebrafish swim into view. Nat. Rev. Genet. 8, 353–367 (2007).

    Article  CAS  Google Scholar 

  24. Rawls, J.F., Samuel, B.S. & Gordon, J.I. Gnotobiotic zebrafish reveal evolutionarily conserved responses to the gut microbiota. Proc. Natl. Acad. Sci. USA 101, 4596–4601 (2004).

    Article  CAS  Google Scholar 

  25. Bates, J.M. et al. Distinct signals from the microbiota promote different aspects of zebrafish gut differentiation. Dev. Biol. 297, 374–386 (2006).

    Article  CAS  Google Scholar 

  26. Rawls, J.F., Mahowald, M.A., Ley, R.E. & Gordon, J.I. Reciprocal gut microbiota transplants from zebrafish and mice to germ-free recipients reveal host habitat selection. Cell 127, 423–433 (2006).

    Article  CAS  Google Scholar 

  27. Rawls, J.F., Mahowald, M.A., Goodman, A.L., Trent, C.M. & Gordon, J.I. In vivo imaging and genetic analysis link bacterial motility and symbiosis in the zebrafish gut. Proc. Natl. Acad. Sci. USA 104, 7622–7627 (2007).

    Article  CAS  Google Scholar 

  28. Bates, J.M., Akerlund, J., Mittge, E. & Guillemin, K. Intestinal alkaline phosphatase detoxifies lipopolysaccharide and prevents inflammation in zebrafish in response to the gut microbiota. Cell Host Microbe 2, 371–382 (2007).

    Article  CAS  Google Scholar 

  29. Dethlefsen, L., Eckburg, P.B., Bik, E.M. & Relman, D.A. Assembly of the human intestinal microbiota. Trends Ecol. Evol. 21, 517–523 (2006).

    Article  Google Scholar 

  30. Volkman, H.E. et al. Tuberculous granuloma formation is enhanced by a mycobacterium virulence determinant. PLoS Biol. 2, e367 (2004).

    Article  Google Scholar 

  31. Mathias, J.R. et al. Live imaging of chronic inflammation caused by mutation of zebrafish Hai1. J. Cell Sci. 120, 3372–3383 (2007).

    Article  CAS  Google Scholar 

  32. Farber, S.A. et al. Genetic analysis of digestive physiology using fluorescent phospholipid reporters. Science 292, 1385–1388 (2001).

    Article  CAS  Google Scholar 

  33. Laughlin, S.T., Baskin, J.M., Amacher, S.L. & Bertozzi, C.R. In vivo imaging of membrane-associated glycans in developing zebrafish. Science 320, 664–667 (2008).

    Article  CAS  Google Scholar 

  34. Peterson, R.T., Link, B.A., Dowling, J.E. & Schreiber, S.L. Small molecule developmental screens reveal the logic and timing of vertebrate development. Proc. Natl. Acad. Sci. USA 97, 12965–12969 (2000).

    Article  CAS  Google Scholar 

  35. Nasevicius, A. & Ekker, S.C. Effective targeted gene 'knockdown' in zebrafish. Nat. Genet. 26, 216–220 (2000).

    Article  CAS  Google Scholar 

  36. Hooper, L.V. et al. Methods in Microbiology 31, 559–589 (2002).

    Article  CAS  Google Scholar 

  37. Heine, W.O.P. Environmental Management in Laboratory Animal Units: Basic Technology and Hygiene Methods and Practice (Pabst Science Publishers, Scottsdale, AZ, 1998).

  38. Unnikrishnan, M., Cohen, J. & Sriskandan, S. Growth-phase-dependent expression of virulence factors in an M1T1 clinical isolate of Streptococcus pyogenes . Infect. Immun. 67, 5495–5499 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Neidhardt, F.C. et al. Escherichia coli and Salmonella: Cellular and Molecular Biology (ASM Press, Washington, DC, 1996).

  40. Lee, C.A. & Falkow, S. The ability of Salmonella to enter mammalian cells is affected by bacterial growth state. Proc. Natl. Acad. Sci. USA 87, 4304–4308 (1990).

    Article  CAS  Google Scholar 

  41. Westerfield, M. The Zebrafish Book. A Guide for the Laboratory Use of Zebrafish (Danio rerio) (University of Oregon Press, Eugene, OR, 2000).

  42. Kimmel, C.B., Ballard, W.W., Kimmel, S.R., Ullmann, B. & Schilling, T.F. Stages of embryonic development of the zebrafish. Dev. Dyn. 203, 253–310 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health (DK073695, DK34987, DK07737 and RR018603) and the University of North Carolina at Chapel Hill. We thank Maureen Bower, Roger Orcutt, Chad Trent, Frank Kanther, Erika Mittge and Karen Guillemin for helpful discussions and protocol development, and Jon Gerler for assistance with illustrations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John F Rawls.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pham, L., Kanther, M., Semova, I. et al. Methods for generating and colonizing gnotobiotic zebrafish. Nat Protoc 3, 1862–1875 (2008). https://doi.org/10.1038/nprot.2008.186

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2008.186

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing