Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

PCR-based gene targeting in Candida albicans

Abstract

PCR-based gene-targeting approaches have increased the speed of gene function analyses in ascomycetous fungi, for example, in the diploid human fungal pathogen Candida albicans. Here we describe a protocol that utilizes Rapid-PCR to amplify all cassettes available with the previously reported pFA modules. With this protocol, sufficient quantities of any cassette for use in C. albicans transformation experiments can be reliably generated in 25–50 min using either of the two alternative optimized amplification conditions; cassette amplification by standard PCR methods typically takes 3–4 h and is likely to require optimization of amplification conditions for each cassette. Transformants that appear 2–4 d after transformation can be rapidly identified using Rapid-PCR on whole cells, eliminating the need for genomic DNA extraction. In total, less than a week is required for the deletion of one allele in C. albicans. Repeating this procedure will result in the generation of homozygous mutant strains.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Amplification of pFA cassettes using the SpeedCycler.
Figure 2: Transformation strategy and verification of transformants.

Similar content being viewed by others

References

  1. Hasty, P., Rivera-Perez, J. & Bradley, A. The length of homology required for gene targeting in embryonic stem cells. Mol. Cell. Biol. 11, 5586–5591 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Baudin, A., Ozier-Kalogeropoulos, O., Denouel, A., Lacroute, F. & Cullin, C. A simple and efficient method for direct gene deletion in Saccharomyces cerevisiae. Nucleic Acids Res. 21, 3329–3330 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wach, A. PCR-synthesis of marker cassettes with long flanking homology regions for gene disruptions in S. cerevisiae. Yeast 12, 259–265 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. Wach, A., Brachat, A., Pohlmann, R. & Philippsen, P. New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast 10, 1793–1808 (1994).

    Article  CAS  PubMed  Google Scholar 

  5. Bahler, J. et al. Heterologous modules for efficient and versatile PCR-based gene targeting in Schizosaccharomyces pombe. Yeast 14, 943–951 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Wilson, R.B., Davis, D. & Mitchell, A.P. Rapid hypothesis testing with Candida albicans through gene disruption with short homology regions. J. Bacteriol. 181, 1868–1874 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Taroncher-Oldenburg, G. & Stephanopoulos, G. Targeted, PCR-based gene disruption in cyanobacteria: inactivation of the polyhydroxyalkanoic acid synthase genes in Synechocystis sp. PCC6803. Appl. Microbiol. Biotechnol. 54, 677–680 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Wendland, J., Ayad-Durieux, Y., Knechtle, P., Rebischung, C. & Philippsen, P. PCR-based gene targeting in the filamentous fungus Ashbya gossypii. Gene 242, 381–391 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Wendland, J. PCR-based methods facilitate targeted gene manipulations and cloning procedures. Curr. Genet. 44, 115–123 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Nielsen, M.L., Albertsen, L., Lettier, G., Nielsen, J.B. & Mortensen, U.H. Efficient PCR-based gene targeting with a recyclable marker for Aspergillus nidulans. Fungal Genet. Biol. 43, 54–64 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Winzeler, E.A. et al. Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285, 901–906 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Giaever, G. et al. Functional profiling of the Saccharomyces cerevisiae genome. Nature 418, 387–391 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Gietz, R.D. & Schiestl, R.H. High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat. Protoc. 2, 31–34 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Fairhead, C., Llorente, B., Denis, F., Soler, M. & Dujon, B. New vectors for combinatorial deletions in yeast chromosomes and for gap-repair cloning using 'split-marker' recombination. Yeast 12, 1439–1457 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Ninomiya, Y., Suzuki, K., Ishii, C. & Inoue, H. Highly efficient gene replacements in Neurospora strains deficient for nonhomologous end-joining. Proc. Natl. Acad. Sci. USA 101, 12248–12253 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Poggeler, S. & Kuck, U. Highly efficient generation of signal transduction knockout mutants using a fungal strain deficient in the mammalian ku70 ortholog. Gene 378, 1–10 (2006).

    Article  PubMed  Google Scholar 

  17. Fu, J., Hettler, E. & Wickes, B.L. Split marker transformation increases homologous integration frequency in Cryptococcus neoformans. Fungal Genet. Biol. 43, 200–212 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Fonzi, W.A. & Irwin, M.Y. Isogenic strain construction and gene mapping in Candida albicans. Genetics 134, 717–728 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Brand, A., MacCallum, D.M., Brown, A.J., Gow, N.A. & Odds, F.C. Ectopic expression of URA3 can influence the virulence phenotypes and proteome of Candida albicans but can be overcome by targeted reintegration of URA3 at the RPS10 locus. Eukaryot. Cell 3, 900–909 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sharkey, L.L., Liao, W.L., Ghosh, A.K. & Fonzi, W.A. Flanking direct repeats of hisG alter URA3 marker expression at the HWP1 locus of Candida albicans. Microbiology 151, 1061–1071 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Wellington, M., Kabir, M.A. & Rustchenko, E. 5-fluoro-orotic acid induces chromosome alterations in genetically manipulated strains of Candida albicans. Mycologia 98, 393–398 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Reuss, O., Vik, A., Kolter, R. & Morschhauser, J. The SAT1 flipper, an optimized tool for gene disruption in Candida albicans. Gene 341, 119–127 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Noble, S.M. & Johnson, A.D. Strains and strategies for large-scale gene deletion studies of the diploid human fungal pathogen Candida albicans. Eukaryot. Cell 4, 298–309 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gerami-Nejad, M., Berman, J. & Gale, C.A. Cassettes for PCR-mediated construction of green, yellow, and cyan fluorescent protein fusions in Candida albicans. Yeast 18, 859–864 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Gerami-Nejad, M., Hausauer, D., McClellan, M., Berman, J. & Gale, C. Cassettes for the PCR-mediated construction of regulatable alleles in Candida albicans. Yeast 21, 429–436 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Gola, S., Martin, R., Walther, A., Dunkler, A. & Wendland, J. New modules for PCR-based gene targeting in Candida albicans: rapid and efficient gene targeting using 100 bp of flanking homology region. Yeast 20, 1339–1347 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Walther, A. & Wendland, J. An improved transformation protocol for the human fungal pathogen Candida albicans. Curr. Genet. 42, 339–343 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Schaub, Y., Dunkler, A., Walther, A. & Wendland, J. New pFA-cassettes for PCR-based gene manipulation in Candida albicans. J. Basic Microbiol. 46, 416–429 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Martin, R., Walther, A. & Wendland, J. Ras1-induced hyphal development in Candida albicans requires the formin Bni1. Eukaryot. Cell 4, 1712–1724 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dünkler, A. & Wendland, J. Candida albicans Rho-type GTPase encoding genes required for polarized cell growth and cell separation. Eukaryot. Cell 6, 844–854 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Martin, R., Hellwig, D., Schaub, Y., Bauer, J., Walther, A. & Wendland, J. Functional analysis of Candida albicans genes whose Saccharomyces cerevisiae homologs are involved in endocytosis. Yeast 24, 511–522 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Saiki, R.K. et al. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230, 1350–1354 (1985).

    Article  CAS  PubMed  Google Scholar 

  33. Roemer, T. et al. Large-scale essential gene identification in Candida albicans and applications to antifungal drug discovery. Mol. Microbiol. 50, 167–181 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Kohler, G.A., White, T.C. & Agabian, N. Overexpression of a cloned IMP dehydrogenase gene of Candida albicans confers resistance to the specific inhibitor mycophenolic acid. J. Bacteriol. 179, 2331–2338 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sambrook, J., Fritsch, E.F. & Maniatis, T. Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989).

    Google Scholar 

Download references

Acknowledgements

We thank Hans-Peter Saluz and Grit Mrotzek for providing an introduction into Rapid-PCR. Work in our laboratory is supported by the Deutsche Forschungsgemeinschaft and the European Union—Penelope.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Wendland.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walther, A., Wendland, J. PCR-based gene targeting in Candida albicans. Nat Protoc 3, 1414–1421 (2008). https://doi.org/10.1038/nprot.2008.137

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2008.137

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing