Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Development, validation and implementation of immobilized metal affinity for phosphochemicals (IMAP)-based high-throughput screening assays for low-molecular-weight compound libraries

Abstract

This protocol describes assay development, validation and implementation of automated immobilized metal affinity for phosphochemicals (IMAP)-based fluorescence polarization (FP) and time-resolved fluorescence resonance energy transfer (TR-FRET) high-throughput screening (HTS) assays for identification of low-molecular-weight kinase inhibitors. Both procedures are performed in miniaturized kinase reaction volumes and involve the stepwise addition of test or control compounds, enzyme and substrate/ATP. Kinase reactions are stopped by subsequent addition of IMAP-binding buffer. Assay attributes of the IMAP FP and TR-FRET methodologies are described. HTS assays developed using these procedures should result in Z-factors and low assay variability necessary for robust HTS assays. Providing that the required reagents and equipment are available, one scientist should be able to develop a 384-well, miniaturized HTS assay in 6–8 weeks. Specific automated HTS assay conditions will determine the number of assay plates processed in a screening session, but two scientists should expect to process between 100 and 150 assay plates in one 8-h screening day.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Flowchart of high-throughput screening (HTS) stages of development.
Figure 2: A UPDDI-specific screening paradigm to confirm the activity of low-molecular-weight inhibitors identified in IMAP FP/TR-FRET HTS assays.
Figure 3: Assay plate setup for IMAP FP and time-resolved fluorescence resonance energy transfer (TR-FRET) assay formats.
Figure 4: Typical MAX and MIN signals from PKD IMAP FP and PLK1 TR-FRET HTS assays.

Similar content being viewed by others

References

  1. Inglese, J. et al. High-throughput screening assays for the identification of chemical probes. Nat. Chem. Biol. 3, 466–479 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Hertzberg, R.P. & Pope, A.J. High-throughput screening: new technology for the 21st century. Curr. Opin. Chem. Biol. 4, 445–451 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Trinquet, E. & Mathis, G. Fluorescence technologies for the investigation of chemical libraries. Mol. BioSyst. 2, 380–387 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Pereira, D.A. & Williams, J.A. Origin and evolution of high throughput screening. Br. J. Pharmacol. 152, 53–61 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fox, S. et al. High-throughput screening: update of practices and success. J. Biomol. Screen. 11, 864–869 (2006).

    Article  PubMed  Google Scholar 

  6. Verkman, A.S. Drug discovery in academia. Am. J. Physiol. Cell Physiol. 286, C465–C474 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Austin, C.P., Brady, L.S., Insel, T.R. & Collins, F.S. NIH Molecular Libraries Initiative. Science 306, 1138–1139 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Lazo, J.S. Roadmap or roadkill: a pharmacologist's analysis of the NIH Molecular Libraries Initiative. Mol. Interv. 6, 240–241 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Nwaka, S. & Hudson, A. Innovative lead discovery strategies for tropical diseases. Nat. Rev. Drug Discov. 5, 941–955 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Madoux, F. et al. Potent, selective and cell penetrant inhibitors of SF-1 by functional uHTS. Mol. Pharmacol. 73, 1776–1784 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Sharlow, E.R., Leimgruber, S.S., Shun, T.Y. & Lazo, J.S. Development and implementation of miniaturized high throughput time-resolved fluorescence energy transfer assay to identify small molecule inhibitors of polo-like kinase 1. Assay Drug Dev. Technol. 5, 723–735 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Blume-Jensen, P. & Hunter, T. Oncogenic kinase signaling. Nature 411, 355–365 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Cohen, P. Protein kinases—the major drug targets of the twenty-first century. Nat. Rev. Drug Discov. 1, 309–315 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Manning, G., Whyte, D.B., Martinez, R., Hunter, T. & Sudarsanam, S. The protein kinase complement of the human genome. Science 298, 1912–1934 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Gribbon, P. & Sewing, A. Fluorescence readouts in HTS: no gain without pain? Drug Discov. Today 8, 1035–1043 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Munagala, N. et al. Identification of small molecule ceramide kinase inhibitors using a homogeneous chemiluminescence high throughput assay. Assay Drug Dev. Technol. 5, 65–73 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Koresawa, M. & Okabe, T. High-throughput screening with quantitation of ATP consumption: a universal non-radioisotope homogeneous assay for protein kinase. Assay Drug Dev. Technol. 2, 153–160 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Rykx, A. et al. An enzyme-linked immunosorbent assay for protein kinase D activity using phosphorylation site-specific antibodies. Assay Drug Dev. Technol. 5, 637–643 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Togame, H., Fuchikami, K., Sagara, A., Inbe, H. & Ziegelbauer, K. Development of a non-radioactive, 384-well format assay to detect inhibitors of the mitogen-activated protein kinase kinase 4. Assay Drug Dev. Technol. 3, 65–76 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Eggeling, C., Brand, L., Ullmann, D. & Jager, S. Highly sensitive fluorescence detection technology currently available for HTS. Drug Discov. Today 8, 632–641 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Mallari, R. et al. A generic high-throughput screening assay for kinases: protein kinase A as an example. J. Biomol. Screen. 8, 198–204 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Pope, A.J., Haupts, U.M. & Moore, K.J. Homogenous fluorescence readouts for miniaturized high-throughput screening: theory and practice. Drug Discov. Today 4, 350–362 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Kristjansdottir, K. & Rudolph, J. A fluorescence polarization assay for native protein substrates of kinases. Anal. Biochem. 316, 41–49 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Huss, K.L., Blonigen, P.E. & Campbell, R.M. Development of a Transcreener kinase assay for protein kinase A and demonstration of concordance of data with a filter-binding assay format. J. Biomol. Screen. 12, 578–584 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Schröter, T. et al. Comparison of miniaturized time-resolved fluorescence resonance energy transfer and enzyme-coupled luciferase high-throughput screening assays to discover inhibitors of Rho-kinase II (ROCK II). J. Biomol. Screen. 13, 17–28 (2008).

    Article  PubMed  Google Scholar 

  26. Kashem et al. Three mechanistically distinct kinase assays compared: measurements of intrinsic ATPase activity identified the most comprehensive set of ITK inhibitors. J. Biomol. Screen. 12, 70–83 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Von Ahsen, O., Schmidt, A., Klotz, M. & Parczyk, K. Assay concordance between SPA and TR-FRET in high-throughput screening. J. Biomol. Screen. 11, 606–616 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Kadkhodayan, S. et al. Evaluation of assay technologies for the identification of protein-peptide interaction antagonists. Assay Drug Dev. Technol. 5, 501–513 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Rininsland, F. et al. Metal ion-mediated polymer superquenching for highly sensitive detection of kinase and phosphatase activities. Proc. Natl. Acad. Sci. USA 101, 15295–15300 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Comley, J. Assay interference—a limiting factor in HTS. Drug Discov. World Summer 91–98 (2003).

  31. Gaudet, E.A. et al. A homogeneous fluorescence polarization assay adaptable for a range of protein serine/threonine and tyrosine kinases. J. Biomol. Screen. 8, 164–175 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Sportsman, J.R., Gaudet, E.A. & Broge, A. Immobilized metal ion affinity-based fluorescence polarization (IMAP): advance in kinase screening. Assay Drug Dev. Technol. 2, 205–214 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Loomans, E.E., van Doornmalen, A.M., Wat, J.W. & Zaman, G.J. High-throughput screening with immobilized metal ion affinity-based fluorescence polarization detection, a homogeneous assay for protein kinases. Assay Drug Dev. Technol. 1, 445–453 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Banks, P. & Harvey, M. Considerations for using fluorescence polarization in the screening of G protein-coupled receptors. J. Biomol. Screen. 7, 111–117 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Sportsman, R. & Gaudet, E. IMAP: detection and quantification of kinase inhibitors. IMAP application Misc: note number 2 http://www.moleculardevices.com/ (2004).

  36. Turek-Etienne, T.C., Kober, T.P., Stafford, J.M. & Bryant, R.W. Development of a fluorescence polarization AKT serine/threonine kinase assay using an immobilized metal ion affinity-based technology. Assay Drug Dev. Technol. 1, 545–553 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Klumpp, M. et al. Readout technologies for highly miniaturized kinase assays applicable to high-throughput screening in a 1536-well format. J. Biomol. Screen. 11, 617–633 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Lu, Z. et al. Development of a fluorescence polarization bead-based coupled assay to target different activity/conformation states of a protein kinase. J. Biomol. Screen. 9, 309–321 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Comley, J. TR-FRET based assays—getting better with age. Drug Discov. World Spring 22–37 (2006).

  40. Strebhardt, K. & Ullrich, A. Targeting polo-like kinase 1 for cancer therapy. Nat. Rev. Cancer 6, 321–330 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Guimreddy, K. et al. ON01910, a non-ATP-competitive small molecule inhibitor of Plk1, is a potent anticancer agent. Cancer Cell 7, 275–286 (2005).

    Article  Google Scholar 

  42. Steegmaier, M. et al. BI 2536, a potent and selective inhibitor of polo-like kinase 1, inhibits tumor growth in vivo. Curr. Biol. 17, 316–322 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Wang, Q.J. PKD at the crossroads of DAG and PKC signaling. Trends Pharmacol. Sci. 27, 317–323 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Avkiran, M., Rowland, A.J., Cuello, F. & Haworth, R.S. Protein kinase D in the cardiovascular system: emerging roles in health and disease. Circ. Res. 102, 157–163 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Brisson Tierno, M. et al. Development and optimization of high-throughput in vitro protein phosphatase screening assays. Nat. Protoc. 2, 1134–1143 (2007).

    Article  Google Scholar 

  46. Boge, A. TR-FRET detection with IMAP. IMAP application note number 7. http://www.moleculardevices.com/ (2007).

  47. Wu, G., Yuan, Y. & Hodge, C.N. Determining appropriate substrate conversion for enzymatic assays in high-throughput screening. J. Biomol. Screen. 8, 694–700 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Macarrón, R. & Hertzberg, R.P. Design and implementation of high throughput screening assays. Methods Mol. Biol. 190, 1–29 (2002).

    PubMed  Google Scholar 

  49. Duan, W. et al. Establishment and application of a high throughput model for rho kinase inhibitors screening based on fluorescence polarization. Biol. Pharm. Bull. 29, 1138–1142 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Huang, W., Zhang, Y. & Sportsman, J.R. A fluorescence polarization assay for cyclic nucleotide phosphodiesterases. J. Biomol. Screen. 7, 215–222 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Beasley, J.R., McCoy, P.M., Walker, T.L. & Dunn, D.A. Miniaturized, ultra high throughput screening of tyrosine kinases using homogeneous, competitive fluorescence immunoassays. Assay Drug Dev. Technol. 2, 141–151 (2003).

    Article  Google Scholar 

  52. Zhang, J.H., Chung, T.D. & Oldenburg, K.R. A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J. Biomol. Screen. 4, 67–73 (1999).

    Article  CAS  PubMed  Google Scholar 

  53. Johnston, P.A. et al. HTS identifies novel and specific uncompetitive inhibitors of the two-component NS2B-NS3 proteinase of West Nile virus. Assay Drug Dev. Technol. 5, 737–750 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Johnston, P.A. et al. Development and implementation of a 384-well homogeneous fluorescence intensity high-throughput screening assay to identify mitogen-activated protein kinase phosphatase-1 dual-specificity protein phosphatase inhibitors. Assay Drug Dev. Technol. 5, 319–332 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Rhode, H. et al. An improved method for checking HTS/uHTS liquid-handling systems. J. Biomol. Screen. 9, 726–733 (2004).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health grants R03 DA24898-01, U54 MH074411-03 and X01 MH077611-01. We thank Dr. Paul A. Johnston for his technical advice with respect to HTS assay development and implementation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth R Sharlow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharlow, E., Leimgruber, S., Yellow-Duke, A. et al. Development, validation and implementation of immobilized metal affinity for phosphochemicals (IMAP)-based high-throughput screening assays for low-molecular-weight compound libraries. Nat Protoc 3, 1350–1363 (2008). https://doi.org/10.1038/nprot.2008.111

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2008.111

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing