Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

A protocol describing pharynx counts and a review of other assays of apoptotic cell death in the nematode worm Caenorhabditis elegans

Abstract

Studies of the nematode worm Caenorhabditis elegans have provided important insights into the genetics of programmed cell death (PCD), and revealed molecular mechanisms conserved from nematodes to humans. The organism continues to offer opportunities to investigate the processes of apoptosis under very well-defined conditions and at single-cell resolution in living animals. Here, a survey of the common methods used to study the process of PCD in C. elegans is described. Detailed instructions are provided for one standard method—the counting of extra cells of the anterior pharynx—a quantitative technique that can be used to detect even very subtle alterations in the progression of apoptotic cell death.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A conserved core pathway for the execution of programmed cell death.
Figure 2: CED-1GFP surrounds apoptotic cell corpses.
Figure 3: Observation of persistent cell corpses using Nomarksi microscopy.
Figure 4: Using Nomarski microscopy to score PCD in the postdeirid.
Figure 5: Using Nomarski microscopy to identify cells sexually dimorphic for PCD.
Figure 6: Diagrams illustrating the preparation of agarose pads for mounting C. elegans for Nomarski microscopy.
Figure 7: Positions of nuclei in the wild-type anterior phanyx.
Figure 8: An example of nuclear positions in the anterior phanynx of a cell-death-defective animal.

Similar content being viewed by others

References

  1. Jacobson, M.D., Weil, M. & Raff, M.C. Programmed cell death in animal development. Cell 88, 347–354 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Benn, S.C. & Woolf, C.J. Adult neuron survival strategies—slamming on the brakes. Nat. Rev. Neurosci. 5, 686–700 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Bidere, N., Su, H.C. & Lenardo, M.J. Genetic disorders of programmed cell death in the immune system. Annu. Rev. Immunol. 24, 321–352 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Fesik, S.W. Promoting apoptosis as a strategy for cancer drug discovery. Nat. Rev. Cancer 5, 876–885 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Ellis, H.M. & Horvitz, H.R. Genetic control of programmed cell death in the nematode C. elegans . Cell 44, 817–829 (1986).

    Article  CAS  PubMed  Google Scholar 

  6. Horvitz, H.R. Worms, life, and death (Nobel lecture). ChemBioChem 4, 697–711 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Yuan, J. & Horvitz, H.R. A first insight into the molecular mechanisms of apoptosis. Cell 116, S53–S56 1 p following S59 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Lettre, G. & Hengartner, M.O. Developmental apoptosis in C. elegans: a complex CEDnario. Nat. Rev. Mol. Cell Biol. 7, 97–108 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Metzstein, M.M., Stanfield, G.M. & Horvitz, H.R. Genetics of programmed cell death in C. elegans: past, present and future. Trends Genet. 14, 410–416 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Yuan, J., Shaham, S., Ledoux, S., Ellis, H.M. & Horvitz, H.R. The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1 beta-converting enzyme. Cell 75, 641–852 (1993).

    Article  CAS  PubMed  Google Scholar 

  11. Yuan, J. & Horvitz, H.R. The Caenorhabditis elegans cell death gene ced-4 encodes a novel protein and is expressed during the period of extensive programmed cell death. Development 116, 309–320 (1992).

    CAS  PubMed  Google Scholar 

  12. Zou, H., Henzel, W.J., Liu, X., Lutschg, A. & Wang, X. Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90, 405–413 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Hengartner, M.O., Ellis, R.E. & Horvitz, H.R. Caenorhabditis elegans gene ced-9 protects cells from programmed cell death. Nature 356, 494–499 (1992).

    Article  CAS  PubMed  Google Scholar 

  14. Hengartner, M.O. & Horvitz, H.R. C. elegans cell survival gene ced-9 encodes a functional homolog of the mammalian proto-oncogene bcl-2 . Cell 76, 665–676 (1994).

    Article  CAS  PubMed  Google Scholar 

  15. Shaham, S. & Horvitz, H.R. Developing Caenorhabditis elegans neurons may contain both cell-death protective and killer activities. Genes Dev. 10, 578–591 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Conradt, B. & Horvitz, H.R. The C. elegans protein EGL-1 is required for programmed cell death and interacts with the Bcl-2-like protein CED-9. Cell 93, 519–529 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Conradt, B. & Horvitz, H.R. The TRA-1A sex determination protein of C. elegans regulates sexually dimorphic cell deaths by repressing the egl-1 cell death activator gene. Cell 98, 317–327 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Sulston, J.E. & Horvitz, H.R. Post-embryonic cell lineages of the nematode, Caenorhabditis elegans . Dev. Biol. 56, 110–156 (1977).

    Article  CAS  PubMed  Google Scholar 

  19. Sulston, J.E., Schierenberg, E., White, J.G. & Thomson, J.N. The embryonic cell lineage of the nematode Caenorhabditis elegans . Dev. Biol. 100, 64–119 (1983).

    Article  CAS  PubMed  Google Scholar 

  20. Ledwich, D., Wu, Y.C., Driscoll, M. & Xue, D. Analysis of programmed cell death in the nematode Caenorhabditis elegans . Methods Enzymol. 322, 76–88 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Shaham, S. ed. WormBook: Methods in Cell Biology (January 2, 2006), WormBook, ed. The C. elegans Research Community, WormBook, doi/10.1895/wormbook.1.49.1, http://www.wormbook.org.

  22. Liu, H., Strauss, T.J., Potts, M.B. & Cameron, S. Direct regulation of egl-1 and of programmed cell death by the Hox protein MAB-5 and by CEH-20, a C. elegans homolog of Pbx1. Development 133, 641–650 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Thellmann, M., Hatzold, J. & Conradt, B. The Snail-like CES-1 protein of C. elegans can block the expression of the BH3-only cell-death activator gene egl-1 by antagonizing the function of bHLH proteins. Development 130, 4057–4071 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Jagasia, R., Grote, P., Westermann, B. & Conradt, B. DRP-1-mediated mitochondrial fragmentation during EGL-1-induced cell death in C. elegans . Nature 433, 754–760 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Reddien, P.W., Cameron, S. & Horvitz, H.R. Phagocytosis promotes programmed cell death in C. elegans . Nature 412, 198–202 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Hodgkin, J. Exploring the envelope. Systematic alteration in the sex-determination system of the nematode Caenorhabditis elegans . Genetics 162, 767–780 (2002).

    PubMed  PubMed Central  Google Scholar 

  27. Hoeppner, D.J. et al. eor-1 and eor-2 are required for cell-specific apoptotic death in C. elegans . Dev. Biol. 274, 125–138 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Yang, C. et al. RNA aptamers targeting the cell death inhibitor CED-9 induce cell killing in Caenorhabditis elegans . J. Biol. Chem. 281, 9137–9144 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Faber, P.W., Voisine, C., King, D.C., Bates, E.A. & Hart, A.C. Glutamine/proline-rich PQE-1 proteins protect Caenorhabditis elegans neurons from huntingtin polyglutamine neurotoxicity. Proc. Natl. Acad. Sci. USA 99, 17131–17136 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Faber, P.W., Alter, J.R., MacDonald, M.E. & Hart, A.C. Polyglutamine-mediated dysfunction and apoptotic death of a Caenorhabditis elegans sensory neuron. Proc. Natl. Acad. Sci. USA 96, 179–184 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhou, Z., Hartwieg, E. & Horvitz, H.R. CED-1 is a transmembrane receptor that mediates cell corpse engulfment in C. elegans . Cell 104, 43–56 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Schumacher, B. et al. C. elegans ced-13 can promote apoptosis and is induced in response to DNA damage. Cell Death Differ. 12, 153–161 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Kinchen, J.M. et al. Two pathways converge at CED-10 to mediate actin rearrangement and corpse removal in C. elegans . Nature 434, 93–99 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Yu, X., Odera, S., Chuang, C.H., Lu, N. & Zhou, Z. C. elegans dynamin mediates the signaling of phagocytic receptor CED-1 for the engulfment and degradation of apoptotic cells. Dev. Cell 10, 743–757 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Shaham, S., Reddien, P.W., Davies, B. & Horvitz, H.R. Mutational analysis of the Caenorhabditis elegans cell-death gene ced-3 . Genetics 153, 1655–1671 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Stanfield, G.M. & Horvitz, H.R. The ced-8 gene controls the timing of programmed cell deaths in C. elegans . Mol. Cell 5, 423–433 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Speliotes,, E.K. C. elegans BIR-1 acts with the Aurora-like kinase AIR-2 to affect chromosomes and the spindle midzone. PhD Thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts, (2000).

  38. Robertson, A.M.G. & Thompson, J.N. Ultrastructural study of cell death in Caenorhabditis elegans . J. Embryol. Exp. Morphol. 67, 89–100 (1982).

    Google Scholar 

  39. Ellis, R.E., Jacobson, D.M. & Horvitz, H.R. Genes required for the engulfment of cell corpses during programmed cell death in Caenorhabditis elegans . Genetics 129, 79–94 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhou, Z., Caron, E., Hartwieg, E., Hall, A. & Horvitz, H.R. The C. elegans PH domain protein CED-12 regulates cytoskeletal reorganization via a Rho/Rac GTPase signaling pathway. Dev. Cell 1, 477–489 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Hedgecock, E.M., Sulston, J.E. & Thomson, J.N. Mutations affecting programmed cell deaths in the nematode Caenorhabditis elegans . Science 220, 1277–1279 (1983).

    Article  CAS  PubMed  Google Scholar 

  42. Fixsen, W. The genetic control of hypodermal lineages during nematode development. PhD Thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts, (1985).

  43. Sulston, J.E. Post-embryonic development in the ventral cord of Caenorhabditis elegans . Philos. Trans. R. Soc. London B 275, 287–297 (1976).

    Article  CAS  Google Scholar 

  44. Wu, Y.C., Stanfield, G.M. & Horvitz, H.R. NUC-1, a Caenorhabditis elegans DNase II homolog, functions in an intermediate step of DNA degradation during apoptosis. Genes Dev. 14, 536–548 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Gumienny, T.L., Lambie, E., Hartwieg, E., Horvitz, H.R. & Hengartner, M.O. Genetic control of programmed cell death in the Caenorhabditis elegans hermaphrodite germline. Development 126, 1011–1022 (1999).

    CAS  PubMed  Google Scholar 

  46. Gavrieli, Y., Sherman, Y. & Ben-Sasson, S.A. Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J. Cell Biol. 119, 493–501 (1992).

    Article  CAS  PubMed  Google Scholar 

  47. Parrish, J. et al. Mitochondrial endonuclease G is important for apoptosis in C. elegans . Nature 412, 90–94 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Wang, X., Yang, C., Chai, J., Shi, Y. & Xue, D. Mechanisms of AIF-mediated apoptotic DNA degradation in Caenorhabditis elegans . Science 298, 1587–1592 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Parrish, J.Z., Yang, C., Shen, B. & Xue, D. CRN-1, a Caenorhabditis elegans FEN-1 homologue, cooperates with CPS-6/EndoG to promote apoptotic DNA degradation. EMBO J. 22, 3451–3460 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Parrish, J.Z. & Xue, D. Functional genomic analysis of apoptotic DNA degradation in C. elegans . Mol. Cell 11, 987–996 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Eisenhut, R.J., Knox, D. & Hermann, G.J. Characterization of a conserved apoptotic marker expressed in Caenorhabditis elegans phagocytic cells. Biochem. Biophys. Res. Commun. 335, 1231–1238 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Green, D.R. & Kroemer, G. The pathophysiology of mitochondrial cell death. Science 305, 626–629 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Chen, F. et al. Translocation of C. elegans CED-4 to nuclear membranes during programmed cell death. Science 287, 1485–1489 (2000).

    Article  CAS  PubMed  Google Scholar 

  54. Delivani, P., C., A., Taylor, R.C., Duriez, P.J. & Martin, S.J. Role for CED-9 and EGL-1 as regulators of mitochondrial fission and fusion dynamics. Mol. Cell 21, 761–773 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Wu, Y.C. & Horvitz, H.R. The C. elegans cell corpse engulfment gene ced-7 encodes a protein similar to ABC transporters. Cell 93, 951–960 (1998).

    Article  CAS  PubMed  Google Scholar 

  56. Wu, Y.C. & Horvitz, H.R. C. elegans phagocytosis and cell-migration protein CED-5 is similar to human DOCK180. Nature 392, 501–504 (1998).

    Article  CAS  PubMed  Google Scholar 

  57. Sugimoto, A. et al. Many genomic regions are required for normal embryonic programmed cell death in Caenorhabditis elegans . Genetics 158, 237–252 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Thomas, C., DeVries, P., Hardin, J. & White, J. Four-dimensional imaging: computer visualization of 3D movements in living specimens. Science 273, 603–607 (1996).

    Article  CAS  PubMed  Google Scholar 

  59. Barr, M.M. & Sternberg, P.W. A polycystic kidney-disease gene homologue required for male mating behaviour in C elegans . Nature 401, 386–389 (1999).

    CAS  PubMed  Google Scholar 

  60. Hengartner, M.O. & Horvitz, H.R. Activation of C. elegans cell death protein CED-9 by an amino-acid substitution in a domain conserved in Bcl-2. Nature 369, 318–320 (1994).

    Article  CAS  PubMed  Google Scholar 

  61. Brenner, S. The genetics of Caenorhabditis elegans . Genetics 77, 71–94 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Herman, T., Hartwieg, E. & Horvitz, H.R. sqv mutants of Caenorhabditis elegans are defective in vulval epithelial invagination. Proc. Natl. Acad. Sci. USA 96, 968–973 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Aspock, G., Ruvkun, G. & Burglin, T.R. The Caenorhabditis elegans ems class homeobox gene ceh-2 is required for M3 pharynx motoneuron function. Development 130, 3369–3378 (2003).

    Article  PubMed  Google Scholar 

  64. Sze, J.Y., Victor, M., Loer, C., Shi, Y. & Ruvkun, G. Food and metabolic signalling defects in a Caenorhabditis elegans serotonin-synthesis mutant. Nature 403, 560–564 (2000).

    Article  CAS  PubMed  Google Scholar 

  65. Lints, R. & Emmons, S.W. Patterning of dopaminergic neurotransmitter identity among Caenorhabditis elegans ray sensory neurons by a TGFbeta family signaling pathway and a Hox gene. Development 126, 5819–5831 (1999).

    CAS  PubMed  Google Scholar 

  66. Alkema, M.J., Hunter-Ensor, M., Ringstad, N. & Horvitz, H.R. Tyramine functions independently of octopamine in the Caenorhabditis elegans nervous system. Neuron 46, 247–260 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Burdine, R.D., Branda, C.S. & Stern, M.J. EGL-17(FGF) expression coordinates the attraction of the migrating sex myoblasts with vulval induction in C. elegans . Development 125, 1083–1093 (1998).

    CAS  PubMed  Google Scholar 

  68. Desai, C., Garriga, G., McIntire, S.L. & Horvitz, H.R. A genetic pathway for the development of the Caenorhabditis elegans HSN motor neurons. Nature 336, 638–646 (1988).

    Article  CAS  PubMed  Google Scholar 

  69. Desai, C. & Horvitz, H.R. Caenorhabditis elegans mutants defective in the functioning of the motor neurons responsible for egg laying. Genetics 121, 703–721 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Shaham, S. & Horvitz, H.R. An alternatively spliced C. elegans ced-4 RNA encodes a novel cell death inhibitor. Cell 86, 201–208 (1996).

    Article  CAS  PubMed  Google Scholar 

  71. Driscoll, M. & Chalfie, M. The mec-4 gene is a member of a family of Caenorhabditis elegans genes that can mutate to induce neuronal degeneration. Nature 349, 588–593 (1991).

    Article  CAS  PubMed  Google Scholar 

  72. Ferguson, E.L. & Horvitz, H.R. Identification and characterization of 22 genes that affect the vulval cell lineages of the nematode Caenorhabditis elegans . Genetics 110, 17–72 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Joshi, P. & Eisenmann, D.M. The Caenorhabditis elegans pvl-5 gene protects hypodermal cells from ced-3-dependent, ced-4-independent cell death. Genetics 167, 673–685 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I thank H. Robert Horvitz, Brendan Galvin and Daniel Denning for their comments on the manuscript, Brian Harfe and Andrew Fire for providing the unpublished egl-17gfp reporter and information on its expression in the M4 neuron, Brendan Galvin for discussions regarding the use of lin-11gfp, Maureen Barr and Paul Sternberg for pkd-2gfp, Robyn Lints and Scott Emmons for cat-2gfp, Catherine Branda and Michael Stern for egl-17gfp and Mike Hurwitz for the ced-1(e1735); bcIs39 strain. This work was supported by a David H. Koch Graduate Fellowship and by funding from the Howard Hughes Medical Institute to H. Robert Horvitz.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hillel T Schwartz.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwartz, H. A protocol describing pharynx counts and a review of other assays of apoptotic cell death in the nematode worm Caenorhabditis elegans. Nat Protoc 2, 705–714 (2007). https://doi.org/10.1038/nprot.2007.93

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2007.93

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing