Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Synthesis and oligonucleotide incorporation of fluorescent cytosine analogue tC: a promising nucleic acid probe

Abstract

The tricyclic cytosine, tC, is a fluorescent base analogue with excellent properties for investigating intrinsic characteristics of nucleic acid as well as interactions between nucleic acids and other molecules. Its unique fluorescence properties and insignificant influence on overall structure and dynamics of nucleic acid after incorporation makes tC particularly interesting in fluorescence resonance energy transfer and anisotropy measurements. We here describe a straightforward synthesis of the standard monomer form of tC for DNA solid-phase synthesis, the tC phosphoramidite, and its subsequent incorporation into oligonucleotides. The total synthesis of the tC phosphoramidite takes approximately 8 days and its incorporation and the subsequent oligonucleotide purification an additional day.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Rist, M.J. & Marino, J.P. Fluorescent nucleotide base analogs as probes of nucleic acid structure, dynamics and interactions. Curr. Org. Chem. 6, 775–793 (2002).

    Article  CAS  Google Scholar 

  2. Okamoto, A., Saito, Y. & Saito, I. Design of base-discriminating fluorescent nucleosides. J. Photochem. Photobiol. C 6, 108–122 (2005).

    Article  CAS  Google Scholar 

  3. Wilson, J.N. & Kool, E.T. Fluorescent DNA base replacements: reporters and sensors for biological systems. Org. Biomol. Chem. 4, 4265–4274 (2006).

    Article  CAS  Google Scholar 

  4. Ward, D.C., Reich, E. & Stryer, L. Fluorescence studies of nucleotides and polynucleotides I. Formycin 2-aminopurine riboside 2,6-diaminopurine riboside and their derivatives. J. Biol. Chem. 244, 1228–1237 (1969).

    CAS  PubMed  Google Scholar 

  5. Holmén, A., Nordén, B. & Albinsson, B. Electronic transition moments of 2-aminopurine. J. Am. Chem. Soc. 119, 3114–3121 (1997).

    Article  Google Scholar 

  6. Hawkins, M.E., Pfleiderer, W., Mazumder, A., Pommier, Y.G. & Falls, F.M. Incorporation of a fluorescent guanosine analog into oligonucleotides and its application to a real-time assay for the Hiv-1 integrase 3′-processing reaction. Nucleic Acids Res. 23, 2872–2880 (1995).

    Article  CAS  Google Scholar 

  7. Hawkins, M.E., Pfleiderer, W., Balis, F.M., Porter, D. & Knutson, J.R. Fluorescence properties of pteridine nucleoside analogs as monomers and incorporated into oligonucleotides. Anal. Biochem. 244, 86–95 (1997).

    Article  CAS  Google Scholar 

  8. Driscoll, S.L., Hawkins, M.E., Balis, F.M., Pfleiderer, W. & Laws, W.R. Fluorescence properties of a new guanosine analog incorporated into small oligonucleotides. Biophys. J. 73, 3277–3286 (1997).

    Article  CAS  Google Scholar 

  9. Hawkins, M.E., Pfleiderer, W., Jungmann, O. & Balis, F.M. Synthesis and fluorescence characterization of pteridine adenosine nucleoside analogs for DNA incorporation. Anal. Biochem. 298, 231–240 (2001).

    Article  CAS  Google Scholar 

  10. Hawkins, M.E. Fluorescent pteridine nucleoside analogs—a window on DNA interactions. Cell Biochem. Biophys. 34, 257–281 (2001).

    Article  CAS  Google Scholar 

  11. Berry, D.A. et al. Pyrrolo-dC and pyrrolo-C: fluorescent analogs of cytidine and 2′-deoxycytidine for the study of oligonucleotides. Tetrahedron Lett. 45, 2457–2461 (2004).

    Article  CAS  Google Scholar 

  12. Guest, C.R., Hochstrasser, R.A., Sowers, L.C. & Millar, D.P. Dynamics of mismatched base-pairs in DNA. Biochemistry 30, 3271–3279 (1991).

    Article  CAS  Google Scholar 

  13. Stivers, J.T. 2-Aminopurine fluorescence studies of base stacking interactions at abasic sites in DNA: metal-ion and base sequence effects. Nucleic Acids Res. 26, 3837–3844 (1998).

    Article  CAS  Google Scholar 

  14. Hochstrasser, R.A., Carver, T.E., Sowers, L.C. & Millar, D.P. Melting of a DNA helix terminus within the active-site of a DNA-polymerase. Biochemistry 33, 11971–11979 (1994).

    Article  CAS  Google Scholar 

  15. Allan, B.W. & Reich, N.O. Targeted base stacking disruption by the EcoRI DNA methyltransferase. Biochemistry 35, 14757–14762 (1996).

    Article  CAS  Google Scholar 

  16. Bloom, L.B., Otto, M.R., Beechem, J.M. & Goodman, M.F. Influence of 5′-nearest neighbors on the insertion kinetics of the fluorescent nucleotide analog 2-aminopurine by Klenow fragment. Biochemistry 32, 11247–11258 (1993).

    Article  CAS  Google Scholar 

  17. Lycksell, P.O. et al. Base pair opening dynamics of a 2-aminopurine substituted EcoRi restriction sequence and its unsubstituted counterpart in oligonucleotides. Nucleic Acids Res. 15, 9011–9025 (1987).

    Article  CAS  Google Scholar 

  18. Stivers, J.T., Pankiewicz, K.W. & Watanabe, K.A. Kinetic mechanism of damage site recognition and uracil flipping by Escherichia coli uracil DNA glycosylase. Biochemistry 38, 952–963 (1999).

    Article  CAS  Google Scholar 

  19. Wilhelmsson, L.M., Holmén, A., Lincoln, P., Nielsen, P.E. & Nordén, B. A highly fluorescent DNA base analogue that forms Watson–Crick base pairs with guanine. J. Am. Chem. Soc. 123, 2434–2435 (2001).

    Article  CAS  Google Scholar 

  20. Wilhelmsson, L.M. et al. Photophysical characterization of fluorescent DNA base analogue, tC. J. Phys. Chem. B 107, 9094–9101 (2003).

    Article  CAS  Google Scholar 

  21. Sandin, P. et al. Fluorescent properties of DNA base analogue tC upon incorporation into DNA––negligible influence of neighbouring bases on fluorescence quantum yield. Nucleic Acids Res. 33, 5019–5025 (2005).

    Article  CAS  Google Scholar 

  22. Engman, K.C. et al. DNA adopts normal B-form upon incorporation of highly fluorescent DNA base analogue tC: NMR structure and UV–Vis spectroscopy characterization. Nucleic Acids Res. 32, 5087–5095 (2004).

    Article  CAS  Google Scholar 

  23. Kazimierczuk, Z., Cottam, H.B., Revankar, G.R. & Robins, R.K. Synthesis of 2′-deoxytubercidin, 2′-deoxyadenosine, and related 2′-deoxynucleosides via a novel direct stereospecific sodium-salt glycosylation procedure. J. Am. Chem. Soc. 106, 6379–6382 (1984).

    Article  CAS  Google Scholar 

  24. Roth, B. & Hitchings, G.H. 5-Arylthiopyrimidines. II. 2- and 4-alkylamino and 4-amino derivatives. J. Org. Chem. 26, 2770–2778 (1961).

    Article  CAS  Google Scholar 

  25. Roth, B. & Schloemer, L.A. 5-Arylthiopyrimidines. III. Cyclization of 4-hydroxy derivatives to 10H-pyrimido[5,4-b][1,4]benzothiazines (1,3-diazaphenothiazines). J. Org. Chem. 28, 2659–2672 (1663).

    Article  Google Scholar 

  26. Rolland, V., Kotera, M. & Lhomme, J. Convenient preparation of 2-deoxy-3,5-di-O-p-toluoyl-alpha-D-erythro-pentofuranosyl chloride. Synt. Com. 27, 3505–3511 (1997).

    Article  CAS  Google Scholar 

  27. Lin, K.Y., Jones, R.J. & Matteucci, M. Tricyclic 2′-deoxycytidine analogs—syntheses and incorporation into oligodeoxynucleotides which have enhanced binding to complementary RNA. J. Am. Chem. Soc. 117, 3873–3874 (1995).

    Article  CAS  Google Scholar 

  28. Brown, T. & Grzybowski, J. Preparation of synthetic oligodeoxynucleotide probes. in Gene Probes: A Practical Approach (Eds. B.D. Hames & S.J. Higgins) Ch. 5 146–167 (IRL Press, Oxford University Press, Oxford, UK, 1995).

    Google Scholar 

  29. Brown, T. & Brown, D.J.S. Purification of synthetic DNA. Methods Enzymol. 211, 20–35 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L Marcus Wilhelmsson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sandin, P., Lincoln, P., Brown, T. et al. Synthesis and oligonucleotide incorporation of fluorescent cytosine analogue tC: a promising nucleic acid probe. Nat Protoc 2, 615–623 (2007). https://doi.org/10.1038/nprot.2007.80

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2007.80

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing