Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Agrobacterium-mediated transformation of Brassica napus and Brassica oleracea

Abstract

Agrobacterium-mediated transformation is widely used for gene delivery in plants. However, commercial cultivars of crop plants are often recalcitrant to transformation because the protocols established for model varieties are not directly applicable to them. The genus Brassica includes the oil seed crop, canola (B. napus), and vegetable crop varieties of Brassica oleracea, including cauliflower, broccoli and cabbage. Here, we describe an efficient protocol for Agrobacterium-mediated transformation using seedling explants that is applicable to various Brassica varieties; this protocol has been used to genetically engineer commercial cultivars of canola and cauliflower in our laboratory. Young seedling explants are inoculated with Agrobacterium on the day of explant preparation. Explants are grown for 1 week in the absence of a selective agent before being transferred to a selective medium to recover transgenic shoots. Transgenic shoots are subjected to an additional round of selection on medium containing higher levels of the selective agent and a low-carbohydrate source; this helps to eliminate false-positive plants. Use of seedling explants offers flexible experiment planning and a convenient explant source. Using this protocol, transgenic plants can be obtained in 2.5 to 3.5 months.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of the steps involved in Agrobacterium-mediated transformation of Brassica.
Figure 2: Transgenic Brassica oleracea plants.

Similar content being viewed by others

References

  1. Òstergaard, L. et al. Pod shatter-resistant Brassica fruit produced by ectopic expression of the FRUITFULL gene. Plant Biotech J. 4, 45–51 (2006).

    Article  Google Scholar 

  2. Cardoza, V. & Stewart, N.C. Canola (Brassica napus L.). in Methods in Molecular Biology Vol. 343 (ed. Wang, K.) 257–265 (Humana Press Inc., Totowa, New Jersey, (2006)).

    Google Scholar 

  3. Poulsen, G.B. Genetic transformation of Brassica. Plant Breed. 115, 209–225 (1996).

    Article  CAS  Google Scholar 

  4. Puddephat, I.J. et al. Transformation of Brassica oleracea L: a critical review. Mol. Breed. 2, 185–210 (1996).

    Article  Google Scholar 

  5. Mukhopadhyay, A.R. et al. Efficient regeneration of Brassica oleracea hypocotyl protoplasts and high frequency genetic transformation by direct DNA uptake. Plant Cell Rep. 10, 375–379 (1991).

    CAS  PubMed  Google Scholar 

  6. Radchuk, V.V. et al. Genetic transformation of cauliflower (Brassica oleracea var botrytis) by direct DNA uptake into mesophyll protoplasts. Physiol. Plant. 114, 429–438 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Eimert, K. & Siegemund, F. Transformation of cauliflower (Brassica oleracea var botrytis): an experimental survey. Plant Mol. Biol. 19, 485–490 (1992).

    Article  CAS  PubMed  Google Scholar 

  8. Bergman, P. & Glimelius, K. Electroporation of rapeseed protoplast—transient and stable transformation. Physiol. Plant. 88, 604–611 (1993).

    Article  CAS  PubMed  Google Scholar 

  9. Herve, C. et al. Molecular analysis of transgenic rapeseed plants obtained by direct gene transfer of two separate plasmids containing, respectively, the cauliflower mosaic virus coat protein gene and a selectable marker gene. Plant Sci. 91, 181–193 (1993).

    Article  CAS  Google Scholar 

  10. Jones-Villeneuve, E. et al. Assessment of microinjection for introducing DNA into uninuclear microspores of rapeseed. Plant Cell Tissue Organ Cult. 40, 97–100 (1995).

    Article  Google Scholar 

  11. Chen, J.L. & Beversdorf, W.D. A combined use of microprojectile bombardment and DNA imbibition enhances transformation frequency of canola (Brassica napus L.). Theor. Appl. Genet. 88, 187–192 (1994).

    Article  CAS  PubMed  Google Scholar 

  12. Nehlin, L. et al. Transient β-gus and gfp expression and viability analysis of microprojectile bombarded microspores of Brassica napus L. J. Plant Physiol. 156, 175–183 (2000).

    Article  CAS  Google Scholar 

  13. Christey, M.C. & Sinclair, B.K. Regeneration of transgenic kale (Brassica oleracea var acephala), rape (B. napus) and turnip (B. campestris var rapifera) plants via Agrobacterium rhizogenes-mediated transformation. Plant Sci. 87, 161–169 (1992).

    Article  CAS  Google Scholar 

  14. Metz, T.D., Dixit, R. & Earle, E.D. Agrobacterium tumefaciens-mediated transformation of broccoli (Brassica oleracea var italica) and cabbage (B. oleracea var capitata). Plant Cell Rep. 15, 287–292 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. Henzi, M.X., Christey, M.C. & McNeil, D.L. Factors that influence Agrobacterium rhizogenes-mediated transformation of broccoli (Brassica oleracea L. var italica). Plant Cell Rep. 19, 994–999 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Puddephat, I.J. et al. Recovery of phenotypically normal transgenic plants of Brassica oleracea upon Agrobacterium rhizogenes-mediated co-transformation and selection of transformed hairy roots by GUS assay. Mol. Breed. 7, 229–242 (2001).

    Article  CAS  Google Scholar 

  17. Oldacres, A.M., Newbury, H.J. & Puddephat, I.J. QTLs controlling the production of transgenic and adventitious roots in Brassica oleracea following treatment with Agrobacterium rhizogenes. Theor. Appl. Genet. 111, 479–488 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Sparrow, P.A.C. et al. Genetic analysis of Agrobacterium tumefaciens susceptibility in Brassica oleracea. Theor. Appl. Genet. 108, 644–650 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Sparrow, P.A.C. et al. Genetic analysis of in vitro shoot regeneration from cotyledonary petioles of Brassica oleracea. Theor. Appl. Genet. 108, 1249–1255 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Rommens, C.M. et al. Crop improvement through modification of the plant's own genome. Plant Physiol. 135, 421–431 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nielsen, K.M. Transgenic organisms—time for conceptual diversification. Nat. Biotechnol. 21, 227–228 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. de Block, M., de Brouwer, D. & Tenning, P. Transformation of Brassica napus and Brassica oleracea using Agrobacterium tumefaciens and the expression of bar and neo genes in transgenic plants. Plant Physiol. 91, 694–701 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Moloney, M.M., Walker, J.M. & Sharma, K.K. High efficiency transformation of Brassica napus using Agrobacterium vectors. Plant Cell Rep. 8, 238–242 (1989).

    Article  CAS  PubMed  Google Scholar 

  24. Barfield, D.G. & Pua, E.C. Gene transfer in plants of Brassica juncea using Agrobacterium tumefaciens-mediated transformation. Plant Cell Rep. 10, 308–314 (1991).

    Article  CAS  PubMed  Google Scholar 

  25. Radke, S.E., Turner, J.C. & Facciotti, D. Transformation and regeneration of Brassica rapa using Agrobacterium tumefaciens. Plant Cell Rep. 11, 499–505 (1992).

    Article  CAS  PubMed  Google Scholar 

  26. Gupta, V. et al. Genetic transformation of Brassica nigra by Agrobacterium-based vector and direct plasmid uptake. Plant Cell Rep. 12, 418–421 (1993).

    CAS  PubMed  Google Scholar 

  27. Damgaard, O. et al. Agrobacterium tumefaciens-mediated transformation of Brassica napus winter cultivars. Transgenic Res. 6, 279–288 (1997).

    Article  CAS  Google Scholar 

  28. Wang, W.C. et al. Development of a novel Agrobacterium-mediated transformation method to recover transgenic Brassica napus plants. Plant Cell Rep. 22, 274–281 (2003).

    Article  PubMed  Google Scholar 

  29. Kazan, K., Curtis, M.D., Goulter, K.C. & Manners, J.M. Agrobacterium tumefaciens-mediated transformation of double haploid canola (Brassica napus) lines. Aust. J. Plant Physiol. 24, 97–102 (1997).

    Google Scholar 

  30. Stewart, C.N. et al. Insect control and dosage effects in transgenic canola containing a synthetic Bacillus thuringiensis crylAc gene. Plant Physiol. 112, 115–120 (1996).

    Article  CAS  PubMed  Google Scholar 

  31. Zhang, Y., Singh, M.B., Swoboda, I. & Bhalla, P.L. Agrobacterium-mediated transformation and generation of male sterile lines of Australian canola. Aust. J. Agric. Res. 56, 353–361 (2005).

    Article  Google Scholar 

  32. Bhalla, P.L. & Smith, N. Agrobacterium-mediated transformation of Australian cultivars of cauliflowers, Brassica oleracea var botrytis. Mol. Breed. 4, 531–541 (1998).

    Article  CAS  Google Scholar 

  33. Bhalla, P.L. & Smith, N. Comparison of regeneration potential from seedling explants of Australian cauliflower (Brassica oleracea) varieties. Aust. J. Agric. Res. 49, 1261–1266 (1998).

    Article  Google Scholar 

  34. Zhang, Y. & Bhalla, P.L In vitro shoot regeneration from commercial cultivars of Australian canola (Brassica napus L.). Aust. J. Agric. Res. 55, 753–756 (2004).

    Article  CAS  Google Scholar 

  35. Murashige, T. & Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15, 473–497 (1962).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support from the Australian Research Council (ARC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prem L Bhalla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhalla, P., Singh, M. Agrobacterium-mediated transformation of Brassica napus and Brassica oleracea. Nat Protoc 3, 181–189 (2008). https://doi.org/10.1038/nprot.2007.527

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2007.527

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing