Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

In vivo models of proliferative vitreoretinopathy

Abstract

We outline current in vitro and in vivo models for experimental proliferative vitreoretinopathy (PVR) and provide a detailed protocol of our standardized in vivo PVR model. PVR is the leading cause of failed surgical procedures for the correction of rhegmatogenous retinal detachment. The pathogenesis of this multifactorial condition is still not completely understood. Experimental models for PVR help us understand the factors that play a role in the pathogenesis of the disease process in a controlled manner and allow for reproducible preclinical assessment of novel therapeutic interventions. We describe a cell injection model in detail that uses homologous retinal pigment epithelial (RPE) cell cultures to induce PVR over a 2–8 week period.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Rabbit eye with the cornea and lens removed.
Figure 2: Rabbit eye is prepared for surgery as described.
Figure 3: RPE cell injection into the eye.
Figure 4: Classification of experimental PVR in a rabbit eye.

Similar content being viewed by others

References

  1. Retina Society Terminology Committee. The classification of retinal detachment with proliferative vitreoretinopathy. Ophthalmology 90, 121–125 (1983).

  2. Machemer, R. Pathogenesis and classification of massive periretinal proliferation. Br. J. Ophthalmol. 62, 737–747 (1978).

    Article  CAS  Google Scholar 

  3. Silicone Study Group. Proliferative vitreoretinopathy (Editorial). Am. J. Ophthalmol. 99, 593–595 (1985).

  4. Green, W.G. & Sebag, J. Vitreoretinal interface. in Retina 4th edn. Vol. 3 (ed. Ryan, S.J.) 1921–1989 (Elsevier Mosby, St. Louis, 2006).

    Chapter  Google Scholar 

  5. Thompson, J.T. Proliferative vitreoretinopathy. in Retina 4th edn. Vol. 3 (ed. Ryan, S.J.) 2282–2309 (Elsevier Mosby, St. Louis, 2006).

    Google Scholar 

  6. Vinores, S.A., Campochiaro, P.A. & Conway, B.P. Ultrastructural and electron-immunocytochemical characterization of cells in epiretinal membranes. Invest. Ophthalmol. Vis. Sci. 31, 14–28 (1990).

    CAS  PubMed  Google Scholar 

  7. Charteris, D.G. Proliferative vitreoretinopathy: Pathobiology, surgical management, and adjunctive treatment. Br. J. Ophthalmol. 79, 953–960 (1995).

    Article  CAS  Google Scholar 

  8. Weller, M., Esser, P., Bresgen, M., Heimann, K. & Wiedemann, P. Thrombospondin: a new attachment protein in preretinal traction membranes. Eur. J. Ophthalmol. 2, 10–14 (1992).

    Article  CAS  Google Scholar 

  9. Hiscott, P.S., Grierson, I. & McLeod, D. Natural history of fibrocellular epiretinal membranes: a quantitative, autoradiographic, and immunohistochemical study. Br. J. Ophthalmol. 11, 810–823 (1985).

    Article  Google Scholar 

  10. Cordeiro, M.F. et al. Molecular therapy in ocular wound healing. Br. J. Ophthalmol. 83, 1219–1224 (1999).

    Article  CAS  Google Scholar 

  11. Campochiaro, P.A. Pathogenesis of proliferative vitreoretinopathy. in Retina 3rd edn. Vol. 3 (ed. Ryan, S.J.) 2221–2227 (Mosby, St. Louis, 2001).

    Google Scholar 

  12. Thumann, G. & Hinton, D.R. Cell biology of the retinal pigment epithelium. in Retina 3rd edn. Vol. 1 (ed. Ryan, S.J.) 104–121 (Mosby, St. Louis, 2001).

    Google Scholar 

  13. Anderson, D.H., Stern, W.H., Fisher, S.K., Erickson, P.A. & Borgula, G.A. The onset of pigment epithelial proliferation after retinal detachment. Invest. Ophthalmol. Vis. Sci. 21, 10–16 (1981).

    CAS  PubMed  Google Scholar 

  14. Jin, M., He, S., Worpel, V., Ryan, S.J. & Hinton, D.R. Promotion of adhesion and migration of RPE cells to provisional extracellular matrices by TNF-α. Invest. Ophthalmol. Vis. Sci. 41, 4324–4332 (2000).

    CAS  PubMed  Google Scholar 

  15. Hinton, D.R. et al. Mitogen-activated protein kinase activation mediates PDGF-directed migration of RPE cells. Exp. Cell Res. 239, 11–15 (1998).

    Article  CAS  Google Scholar 

  16. Limb, G.A., Hollifield, R.D., Webster, L., Charteris, D.G. & Chignell, A.H. Soluble TNF receptors in vitreoretinal proliferative disease. Invest. Opthalmol. Vis. Sci. 42, 1586–1591 (2001).

    CAS  Google Scholar 

  17. Campochiaro, P.A., Sugg, R., Grotendorst, G. & Hjelmeland, L.M. Retinal pigment epithelial cells produce PDGF-like proteins and secrete them into their media. Exp. Eye Res. 49, 217–227 (1989).

    Article  CAS  Google Scholar 

  18. Andrews, A. et al. Platelet-derived growth factor plays a key role in proliferative vitreoretinopathy. Invest. Ophthalmol. Vis. Sci. 40, 2683–2689 (1999).

    CAS  PubMed  Google Scholar 

  19. Ikuno, Y., Leong, F.L. & Kazlauskas, A. Attenuation of experimental proliferative vitreoretinopathy by inhibiting the platelet-derived growth factor receptor. Invest. Ophthalmol. Vis. Sci. 41, 3107–3116 (2000).

    CAS  PubMed  Google Scholar 

  20. Seo, M.S. et al. Photoreceptor-specific expression of platelet-derived growth factor-B results in traction retinal detachment. Am. J. Pathol. 157, 995–1005 (2000).

    Article  CAS  Google Scholar 

  21. Guidry, C. Tractional force generation by porcine muller cells development & differential stimulation by growth factors. Invest. Ophthalmol. Vis. Sci. 38, 456–468 (1997).

    CAS  PubMed  Google Scholar 

  22. Hardwick, C. et al. Tractional force generation by porcine muller cells stimulation by growth factors in human vitreous. Invest. Ophthalmol. Vis. Sci. 38, 2053–2063 (1997).

    CAS  PubMed  Google Scholar 

  23. Pfeffer, B.A., Flanders, K.C., Guerin, C.J., Danielpour, D. & Anderson, D.H. Transforming growth factor beta 2 is the predominant isoform in the neural retina, retinal pigment epithelium-choroid and vitreous of the monkey eye. Exp. Eye. Res. 59, 323–333 (1994).

    Article  CAS  Google Scholar 

  24. Connor, T.B. Jr. et al. Correlation of fibrosis and transforming growth factor-beta type 2 levels in the eye. J. Clin. Invest. 83, 1661–1666 (1989).

    Article  CAS  Google Scholar 

  25. Bornstein, P. Thrombospondins as matricellular modulators of cell function. J. Clin. Invest. 107, 929–934 (2001).

    Article  CAS  Google Scholar 

  26. Koli, K., Saharinen, J., Hyytiainen, M., Penttinen, C. & Keski-Oja, J. Latency, activation, and binding proteins of TGF-beta. Microsc. Res. Tech. 52, 354–362 (2001).

    Article  CAS  Google Scholar 

  27. Hinton, D.R., He, S., Jin, M.L., Barron, E. & Ryan, S.J. Novel growth factors involved in the pathogenesis of proliferative vitreoretinopathy. Eye 16, 422–428 (2002).

    Article  CAS  Google Scholar 

  28. Forrester, J.V., Docherty, R., Kerr, C. & Lackief, J.M. Cellular proliferation in the vitreous: the use of vitreous explants as a model system. Invest. Ophthalmol. Vis. Sci. 27, 1085–1094 (1986).

    CAS  PubMed  Google Scholar 

  29. Gamulescu, M.A. et al. Transforming growth factor beta-2 induced myofibroblastic differentiation of human pigment epithelial cells: regulation by extracellular matrix protein and hepatocyte growth factor. Exp Eye Res. 83, 212–222 (2006).

    Article  CAS  Google Scholar 

  30. Blumenkranz, M.S. & Hartzer, M.K. The mechanism of action of drugs for the treatment of vitreoretinal scarring. in Retina 2nd edn. Vol. 3 (ed. Ryan, S.J.) 2281–2300 (CV Mosby, St. Louis, 1994).

    Google Scholar 

  31. Kimura, H. et al. Retrovirus-mediated suicide gene transduction in the vitreous cavity of the eye: Feasibility in prevention of proliferative vitreoretinopathy. Hum. Gene Ther. 7, 799–808 (1996).

    Article  CAS  Google Scholar 

  32. Lean, J.S., van der Zee, W.A.M. & Ryan, S.J. Experimental model of proliferative vitreoretinopathy (PVR) in the vitrectomized eye: effect of silicone oil. Br. J. Ophthalmol 68, 332–335 (1984).

    Article  CAS  Google Scholar 

  33. Allamby, D., Foreman, D., Carrington, L., McLeod, D. & Boulton, M. Cell attachment to, and contraction of, the retina in vitro . Invest. Ophthalmol. Vis. Sci. 38, 2064–2072 (1997).

    CAS  PubMed  Google Scholar 

  34. Luo, J. & Miller, M.W. Platelet-derived growth factor-mediated signal transduction underlying astrocyte proliferation: site of ethanol action. J. Neurosci. 19, 10014–10125 (1999).

    Article  CAS  Google Scholar 

  35. Fujisawa, K., Spee, C., Hinton, D.R. & Ryan, S.J. PDGF-BB stimulates gliosis in a mouse organ culture model of PVR. Invest. Ophthalmol. Vis. Sci. 44 ARVO E-Abstract 4982 (2003).

  36. de Souza, O.F. et al. Inhibition of experimental proliferative vitreoretinopathy in rabbits by suramin. Ophthalmologica 209, 212–216 (1995).

    Article  CAS  Google Scholar 

  37. Fastenberg, D.M., Diddie, K.R., Sorgente, N. & Ryan, S.J. A comparison of different cellular innocula in an experimental model of massive periretinal proliferation. Am. J. Ophthalmol. 93, 559–564 (1982).

    Article  CAS  Google Scholar 

  38. Fastenberg, D.M., Diddie, K.R., Dorey, K. & Ryan, S.J. The role of cellular proliferation in an experimental model of massive periretinal proliferation. Am. J. Ophthalmol. 93, 565–572 (1982).

    Article  CAS  Google Scholar 

  39. Wiedermann, P., Sorgente, S. & Ryan, S. Proliferative vitreoretinopathy: The rabbit cell injection model for screening of antiproliferative drugs. J. Pharmacol. Methods 12, 69–78 (1984).

    Article  Google Scholar 

  40. Tano, Y., Sigita, G., Abrams, G. & Machemer, R. Inhibition of intraocular proliferation with intravitreal proliferations with intravitreal corticosteroids. Am. J. Ophthalmol. 89, 131–136 (1980).

    Article  CAS  Google Scholar 

  41. Hida, T., Chandler, D.B. & Sheta, S.M. Classification of the stages of proliferative vitreoretinopathy in a refined experimental model in the rabbit eye. Graefes Arch. Clin. Exp. Ophthalmol. 225, 303–307 (1987).

    Article  CAS  Google Scholar 

  42. Hsu, H.T., Dorey, K., Sorgente, N. & Ryan, S.J. Surgical removal of vitreous. Its effect on intraocular fibroblast proliferation in the vitreous. Arch. Ophthalmol. 102, 605–607 (1984).

    Article  CAS  Google Scholar 

  43. Sugita, G. et al. Intravitreal autotransplantation of fibroblasts. Am. J. Ophthalmol. 89, 121–130 (1980).

    Article  CAS  Google Scholar 

  44. Radtke, N.D., Tano, Y., Chandler, D. & Machemer, R. Simulation of massive periretinal proliferation by autotransplantation of retinal pigment cells in rabbits. Am. J. Ophthalmol. 91, 76–87 (1981).

    Article  CAS  Google Scholar 

  45. Yeo, J.H., Sadeghi, J., Campochiaro, P.A., Green, W.R. & Glaser, B.M. Intravitreous fibronectin and platelet-derived growth factor. Arch. Ophthalmol. 104, 417–421 (1986).

    Article  CAS  Google Scholar 

  46. Cleary, P.E. & Ryan, S.J. Method of production and natural history of experimental posterior penetrating eye injury in the rhesus monkey. Am. J. Ophthalmol. 88, 212–220 (1979).

    Article  CAS  Google Scholar 

  47. Wilson, C.A., Khawly, J.A., Hatchell, D.L. & Machemer, R. Experimental traction retinal detachment in the cat. Graefes Arch. Clin. Exp. Ophthalmol. 229, 568–573 (1991).

    Article  CAS  Google Scholar 

  48. Valeria Canto, S.M., Gallo, J.E., Dodds, R.A. & Suburo, A.M. A mouse model of proliferative vitreoretinopathy induced by dispase. Exp. Eye. Res. 75, 491–504 (2002).

    Article  Google Scholar 

  49. Vergara, O., Ogden, T. & Ryan, S.J. Posterior penetrating injury to the rabbit eye: Effect of blood and ferrous ions. Exp. Eye. Res. 49, 1115–1126 (1989).

    Article  CAS  Google Scholar 

  50. Cardillo, J.A. et al. Post-traumatic proliferative vitreoretinopathy: The epidemiologic profile, onset, risk factors and visual outcome. Ophthalmology 104, 1166–1173 (1997).

    Article  CAS  Google Scholar 

  51. Hsu, H.T. & Ryan, S.J. Natural history of penetrating ocular injury with retinal laceration in the monkey. Graefes Arch. Clin. Exp. Ophthalmol. 224, 1–6 (1986).

    Article  CAS  Google Scholar 

  52. Cleary, P.E. & Ryan, S.J. Experimental posterior penetrating eye injury in the rabbit: 1. Method of production and natural history. Br. J. Ophthalmol. 63, 306–311 (1979).

    Article  CAS  Google Scholar 

  53. Cleary, P.E. & Ryan, S.J. Experimental posterior penetrating eye injury in the rabbit. II. Histology of wound, vitreous, and retina. Br. J. Ophthalmol. 63, 312–321 (1979).

    Article  CAS  Google Scholar 

  54. Cleary, P.E. & Ryan, S.J. Vitrectomy in penetrating eye injury. Results of a controlled trial of vitrectomy in an experimental posterior penetrating eye injury in the rhesus monkey. Arch. Ophthalmol. 99, 287–292 (1981).

    Article  CAS  Google Scholar 

  55. Kimura, H. et al. Cellular response in subretinal neovascularization induced by bFGF-impregnated microspheres. Invest. Ophthalmol. Vis. Sci. 40, 524–528 (1999).

    CAS  PubMed  Google Scholar 

  56. Latendresse, J.R., Warbrittion, A.R., Jonassen, H. & Creasy, D.M. Fixation of testes and eyes using a modified Davidson's fluid: comparison with Bouin's fluid and conventional Davidson's fluid. Toxicol. Pathol. 30, 524–533 (2002).

    Article  Google Scholar 

  57. Algvere, P. & Kock, E. Experimental fibroplasia in the rabbit vitreous. Retinal detachment induced by autologous fibroblasts. Albrecht von Graefes Arch. Klin. Exp. Ophthalmol. 199, 215–222 (1976).

    Article  CAS  Google Scholar 

  58. Gonvers, M. & Thrasher, R. Temporary use of silicone oil in the treatment of proliferative vitreoretinopathy: an experimental study with a new animal model. Graefes Arch. Clin. Exp. Ophthalmol. 221, 46–53 (1983).

    Article  CAS  Google Scholar 

  59. Chandler, D.B., Quansah, F.A., Hida, T. & Machemer, R. A refined experimental model for proliferative vitreoretinopathy. Graefes Arch. Clin. Exp. Ophthalmol. 224, 86–91 (1986).

    Article  CAS  Google Scholar 

  60. Sakamoto, T. et al. Inhibition of experimental proliferative vitreoretinopathy by retroviral vector-mediated transfer of suicide gene. Ophthalmology 102, 1417–1424 (1995).

    Article  CAS  Google Scholar 

  61. Wong, C.A. et al. Induction of proliferative vitreoretinopathy by a unique line of human retinal pigment epithelial cells. Can. J. Ophthalmol. 37, 211–220 (2002).

    Article  Google Scholar 

  62. Hui, Y.N., Sorgente, N. & Ryan, S.J. Posterior vitreous separation and retinal detachment induced by macrophages. Graefes Arch. Clin. Exp. Ophthalmol. 225, 279–284 (1987).

    Article  CAS  Google Scholar 

  63. Hui, Y.N., Goodnight, R., Sorgente, N. & Ryan, S.J. Fibrovascular proliferation and retinal detachment after intravitreal injection of activated macrophages in the rabbit eye. Am. J. Ophthalmol. 108, 176–184 (1989).

    Article  CAS  Google Scholar 

  64. Nakagawa, M., Refojo, M.F., Marin, J.F., Doi, M. & Tolentino, F.I. Retinoic acid in silicone and silicone-fluorosilicone copolymer oils in a rabbit model of proliferative vitreoretinopathy. Invest. Ophthalmol. Vis. Sci. 36, 2388–2395 (1995).

    CAS  PubMed  Google Scholar 

  65. Pinon, R.M. et al. Intravitreal and subretinal proliferation induced by platelet-rich plasma injection in rabbits. Curr. Eye Res. 11, 1047–1055 (1992).

    Article  CAS  Google Scholar 

  66. Goldaracena, M.B. et al. The role of retinotomy in an experimental rabbit model of proliferative vitreoretinopathy. Curr. Eye Res. 16, 422–427 (1997).

    Article  CAS  Google Scholar 

  67. Pastor, J.C., Rodriguez, E., Marcos, M.A. & Lopez, M.I. Combined pharmacologic therapy in a rabbit model of proliferative vitreoretinopathy. Ophthalmic Res. 32, 25–29 (2000).

    Article  CAS  Google Scholar 

  68. Garcia-Layana, A., Pastor, J.C., Saornil, M.A. & Gonzalez, G. Porcine model of proliferative vitreoretinopathy with platelets. Curr. Eye. Res. 16, 556–563 (1997).

    Article  CAS  Google Scholar 

  69. Chinn, C., Spee, C., Barron, E., Ryan, S.J. & Hinton, D.R. Strain-dependent gene expression in a lens extraction PVR model. Invest. Ophthlamol. Vis. Sci. 46 ARVO E-Abstract 5528 (2005).

  70. Saika, S. et al. Inhibition of p38MAP kinase suppresses fibrotic reaction of retinal pigment epithelial cells. Lab. Invest. 85, 838–850 (2005).

    Article  CAS  Google Scholar 

  71. Saika, S. et al. Smad3 is required for dedifferentiation of retinal pigment epithelium following retinal detachment in mice. Lab. Invest. 84, 1245–1258 (2004).

    Article  CAS  Google Scholar 

  72. Campochiaro, P.A., Gaskin, H.C. & Vinores, S.A. Retinal cryopexy stimulates traction retinal detachment formation in the presence of an ocular wound. Arch. Ophthalmol. 105, 1567–1570 (1987).

    Article  CAS  Google Scholar 

  73. Liou, G.I. et al. HGF regulation of RPE proliferation in an IL-1 beta/retinal hole-induced rabbit model of PVR. Mol. Vis. 8, 494–501 (2002).

    CAS  PubMed  Google Scholar 

  74. Planck, S.R. et al. Expression of growth factor mRNA in rabbit PVR model systems. Curr. Eye. Res. 11, 1031–1039 (1992).

    Article  CAS  Google Scholar 

  75. Frenzel, E.M., Neely, K.A., Walsh, A.W., Cameron, J.D. & Gregerson, D.S. A new model of proliferative vitreoretinopathy. Invest. Ophthalmol. Vis. Sci. 39, 2157–2164 (1998).

    CAS  PubMed  Google Scholar 

  76. Kralinger, M.T. et al. Experimental model for proliferative vitreoretinopathy by intravitreal dispase: limited by zonulysis and cataract. Ophthalmologica 220, 211–216 (2006).

    Article  Google Scholar 

  77. Yamada, H. et al. Platelet-derived growth factor-A-induced retinal gliosis protects against ischemic retinopathy. Am. J. Pathol. 156, 477–487 (2000).

    Article  CAS  Google Scholar 

  78. Campochiaro, P.A., Hackett, S.F. & Vinores, S.A. Growth factors in the retina and retinal pigmented epithelium. Prog. Retinal Eye Res. 15, 547–567 (1996).

    Article  CAS  Google Scholar 

  79. Akiyama, H. et al. Intraocular injection of an aptamer that binds PDGF-B: A potential treatment for proliferative retinopathies. J. Cell Physiol. 207, 407–412 (2006).

    Article  CAS  Google Scholar 

  80. Jin, M., Chen, Y., He, S., Ryan, S.J. & Hinton, D.R. Hepatocyte growth factor and its role in the pathogenesis of retinal detachment. Invest. Ophthalmol. Vis. Sci. 45, 323–329 (2004).

    Article  Google Scholar 

  81. Blumenkranz, M.S., Ophir, A., Claflin, A.J. & Kajek, A. Fluorouracil for the treatment of massive preretinal proliferation. Am. J. Ophthalmol. 94, 458–467 (1982).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Ernesto Barron for assistance with the figures and Susan Clarke for editorial assistance. This work was supported by National Institutes of Health grant EY02061 and a National Eye Institute core grant to the Doheny Eye Institute (EY03040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David R Hinton.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agrawal, R., He, S., Spee, C. et al. In vivo models of proliferative vitreoretinopathy. Nat Protoc 2, 67–77 (2007). https://doi.org/10.1038/nprot.2007.4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2007.4

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing