Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Competitive PCR for precise nucleic acid quantification

Abstract

The exact quantification of tiny amounts of nucleic acids in biological samples continues to remain a requirement in both the experimental and the diagnostic laboratory. Competitive PCR involves the coamplification of a target DNA sample with known amounts of a competitor DNA that shares most of the nucleotide sequence with the target; in this way, any predictable or unpredictable variable affecting PCR amplification has the same effect on both molecular species. Competitive PCR therefore permits the quantification of the absolute number of target molecules in comparison to the amount of competitor DNA. Although requiring intensive post-PCR manipulation, the accuracy of competitive PCR by far exceeds that of any other quantitative PCR procedure, including real-time PCR. This protocol covers all stages in the competitive PCR and RT-PCR methods, from the design and construction of competitor molecules, and the competitive PCR itself, to the analysis of data and quantification of target DNA. Once the correct primers are available, the protocol can be completed in about 24 h.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Outline of competitive PCR quantification.
Figure 2: Construction of competitors for competitive PCR.
Figure 3: Example of competitive PCR amplification for the quantification of the number of AAV DNA molecules in the muscles of mice injected with an AAV vector expressing vascular endothelial growth factor (VEGF).

Similar content being viewed by others

References

  1. Arrigo, S.J., Weitsman, S., Rosenblatt, J.D. & Chen, I.S. Analysis of rev gene function on human immunodeficiency virus type 1 replication in lymphoid cells by using a quantitative polymerase chain reaction method. J. Virol. 63, 4875–4881 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Chelly, J., Concordet, J.P., Kaplan, J.C. & Kahn, A. Illegitimate transcription: transcription of any gene in any cell type. Proc. Natl. Acad. Sci. USA 86, 2617–2621 (1989).

    Article  CAS  PubMed  Google Scholar 

  3. Oka, S. et al. Quantitative analysis of human immunodeficiency virus type-1 DNA in asymptomatic carriers using the polymerase chain reaction. Biochem. Biophys. Res. Commun. 167, 1–8 (1990).

    Article  CAS  PubMed  Google Scholar 

  4. Simmonds, P. et al. Human immunodeficiency virus-infected individuals contain provirus in small numbers of peripheral mononuclear cells and at low copy numbers. J. Virol. 64, 864–872 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Livak, K.J., Flood, S.J., Marmaro, J., Giusti, W. & Deetz, K. Oligonucleotides with fluorescent dyes at opposite ends provide a quenched probe system useful for detecting PCR product and nucleic acid hybridization. PCR Methods Appl. 4, 357–362 (1995).

    Article  CAS  PubMed  Google Scholar 

  6. Gilliland, G., Perrin, S., Blanchard, K. & Bunn, H.F. Analysis of cytokine mRNA and DNA: detection and quantitation by competitive polymerase chain reaction. Proc. Natl. Acad. Sci. USA 87, 2725–2729 (1990).

    Article  CAS  PubMed  Google Scholar 

  7. Siebert, P.D. & Larrick, J.W. Competitive PCR. Nature 359, 557–558 (1992).

    Article  CAS  PubMed  Google Scholar 

  8. Becker-Andre, M. & Hahlbrock, K. Absolute mRNA quantification using the polymerase chain reaction (PCR). A novel approach by a PCR aided transcript titration assay (PATTY). Nucleic Acids Res. 17, 9437–9446 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Diviacco, S. et al. A novel procedure for quantitative polymerase chain reaction by coamplification of competitive templates. Gene 122, 313–320 (1992).

    Article  CAS  PubMed  Google Scholar 

  10. Celi, F.S., Zenilman, M.E. & Shuldiner, A.R. A rapid and versatile method to synthesize internal standards for competitive PCR. Nucleic Acids Res. 21, 1047 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Henco, K. & Heibey, M. Quantitative PCR: the determination of template copy numbers by temperature gradient gel electrophoresis (TGGE). Nucleic Acids Res. 18, 6733–6734 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tani, H. et al. Quantitative method for specific nucleic acid sequences using competitive polymerase chain reaction with an alternately binding probe. Anal. Chem. 79, 974–979 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Giacca, M. et al. Fine mapping of a replication origin of human DNA. Proc. Natl. Acad. Sci. USA 91, 7119–7123 (1994).

    Article  CAS  PubMed  Google Scholar 

  14. Sestini, R. et al. Measuring c-erbB-2 oncogene amplification in fresh and paraffin-embedded tumors by competitive polymerase chain reaction. Clin. Chem. 40, 630–636 (1994).

    CAS  PubMed  Google Scholar 

  15. Kato, K. et al. Cancer gene expression database (CGED): a database for gene expression profiling with accompanying clinical information of human cancer tissues. Nucleic Acids Res. 33, D533–D536 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Lusic, M., Marcello, A., Cereseto, A. & Giacca, M. Regulation of HIV-1 gene expression by histone acetylation and factor recruitment at the LTR promoter. EMBO J. 22, 6550–6561 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Deutsch, S. et al. Detection of aneuploidies by paralogous sequence quantification. J. Med. Genet. 41, 908–915 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu, W., James, C.D., Frederick, L., Alderete, B.E. & Jenkins, R.B. PTEN/MMAC1 mutations and EGFR amplification in glioblastomas. Cancer Res. 57, 5254–5257 (1997).

    CAS  PubMed  Google Scholar 

  19. Comar, M. et al. Dynamics of HIV-1 mRNA expression in patients with long-term nonprogressive HIV-1 infection. J. Clin. Invest. 100, 893–903 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Grassi, G. et al. A rapid procedure for the quantitation of low abundance RNAs by competitive reverse transcription-polymerase chain reaction. Nucleic Acids Res. 22, 4547–4549 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tafuro, S., Zentilin, L., Falaschi, A. & Giacca, M. Rapid retrovirus titration using competitive polymerase chain reaction. Gene Ther. 3, 679–684 (1996).

    CAS  PubMed  Google Scholar 

  22. Mileham, K.A. et al. Competitive titration for probing low-abundance ion channel mRNA molecules in normal and regionally-ischaemic heart tissue. Mol. Cell. Probes 8, 161–176 (1994).

    Article  CAS  PubMed  Google Scholar 

  23. Nie, G.Y., Wang, J., Li, Y. & Salamonsen, L.A. Construction and application of a multispecific competitor to quantify mRNA of matrix metalloproteinases and their tissue inhibitors in small human biopsies. J. Biochem. Biophys. Methods 40, 81–99 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. McCulloch, R.K., Choong, C.S. & Hurley, D.M. An evaluation of competitor type and size for use in the determination of mRNA by competitive PCR. PCR Methods Appl. 4, 219–226 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. Serth, J., Panitz, F., Herrmann, H. & Alves, J. Single-tube nested competitive PCR with homologous competitor for quantitation of DNA target sequences: theoretical description of heteroduplex formation, evaluation of sensitivity, precision and linear range of the method. Nucleic Acids Res. 26, 4401–4408 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Giacca, M., Pelizon, C. & Falaschi, A. Mapping replication origins by quantifying relative abundance of nascent DNA strands using competitive polymerase chain reaction. Methods 13, 301–312 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Kato, K. Adaptor-tagged competitive PCR: a novel method for measuring relative gene expression. Nucleic Acids Res. 25, 4694–4696 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kita-Matsuo, H. et al. Adaptor-tagged competitive polymerase chain reaction: amplification bias and quantified gene expression levels. Anal. Biochem. 339, 15–28 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Grove, S., Faller, R., Soleim, K.B. & Dannevig, B.H. Absolute quantitation of RNA by a competitive real-time RT-PCR method using piscine nodavirus as a model. J. Virol. Methods 132, 104–112 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Locatelli, G. et al. Real-time quantitative PCR for human herpesvirus 6 DNA. J. Clin. Microbiol. 38, 4042–4048 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Widada, J. et al. Quantification of the carbazole 1,9a-dioxygenase gene by real-time competitive PCR combined with co-extraction of internal standards. FEMS Microbiol. Lett. 202, 51–57 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Ding, C. & Cantor, C.R. A high-throughput gene expression analysis technique using competitive PCR and matrix-assisted laser desorption ionization time-of-flight MS. Proc. Natl. Acad. Sci. USA 100, 3059–3064 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Ding, C. & Cantor, C.R. Quantitative analysis of nucleic acids—the last few years of progress. J. Biochem. Mol. Biol. 37, 1–10 (2004).

    CAS  PubMed  Google Scholar 

  34. McCullough, R.M., Cantor, C.R. & Ding, C. High-throughput alternative splicing quantification by primer extension and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Nucleic Acids Res. 33, e99 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Elvidge, G.P., Price, T.S., Glenny, L. & Ragoussis, J. Development and evaluation of real competitive PCR for high-throughput quantitative applications. Anal. Biochem. 339, 231–241 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Ausubel, F.M. et al. Current Protocols in Molecular Biology (J. Wiley & Sons Inc., New York, NY, 2003).

    Google Scholar 

  37. Sambrook, J., Fritsch, E.F. & Maniatis, T. Molecular Cloning. A Laboratory Manual 2nd edn. (Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauro Giacca.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zentilin, L., Giacca, M. Competitive PCR for precise nucleic acid quantification. Nat Protoc 2, 2092–2104 (2007). https://doi.org/10.1038/nprot.2007.299

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2007.299

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing