Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Detecting antigens by quantitative immuno-PCR

Abstract

The quantitative immuno-PCR (qIPCR) technology combines the advantages of flexible and robust immunoassays with the exponential signal amplification power of PCR. The qIPCR allows one to detect antigens using specific antibodies labeled with double-stranded DNA. The label is used for signal generation by quantitative PCR. Because of the efficiency of nucleic acid amplification, qIPCR typically leads to a 10- to 1,000-fold increase in sensitivity compared to an analogous enzyme-amplified immunoassay. A standard protocol of a qIPCR assay to detect human interleukin 6 (IL-6) using a sandwich immunoassay combined with real-time PCR readout is described here. The protocol includes initial immobilization of the antigen, and coupling of this antigen with antibody–DNA conjugates is then carried out by (a) the stepwise assembly of biotinylated antibody, streptavidin and biotinylated DNA, (b) the use of a biotinylated antibody and an anti-biotin–DNA conjugate or (c) the employment of an anti-IL-6 antibody–DNA conjugate. Following the assembly of signal-generating immunocomplexes, real-time PCR is used to amplify and record the signal. Depending on the coupling strategy, the qIPCR assays require 4–7 h with only about 3 h hands-on-time. The use of qIPCR assays enables the detection of rare biomarkers in complex biological samples that are poorly accessible by conventional immunoassays. Therefore, qIPCR offers novel opportunities for the biomedical analysis of, for instance, neurodegenerative diseases and viral infections as well as new tools for the development of novel pharmaceuticals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of the three different qIPCR options, and the ELISA technique described in this protocol.
Figure 2: Flowchart of the individual steps of the qIPCR protocol.
Figure 3: Data analysis of the qIPCR, exemplified for the sequential qIPCR detection of IL-6.
Figure 4: Typical results of the three optional qIPCR detection strategies (sequential qIPCR (gray bars), modular qIPCR (green bars) and direct qIPCR (blue bars)) for human IL-6 in human serum, compared to the analogous control ELISA (black line).

Similar content being viewed by others

References

  1. Mullis, K.B. & Faloona, F. Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol. 155, 335–350 (1987).

    Article  CAS  PubMed  Google Scholar 

  2. Saiki, R.K. et al. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239, 487–491 (1988).

    Article  CAS  PubMed  Google Scholar 

  3. Sano, T., Smith, C.L. & Cantor, C.R. Immuno-PCR: very sensitive antigen detection by means of specific antibody–DNA conjugates. Science 258, 120–122 (1992).

    Article  CAS  PubMed  Google Scholar 

  4. Niemeyer, C.M., Adler, M. & Wacker, R. Immuno-PCR: high sensitivity detection of proteins by nucleic acid amplification. Trends Biotechnol. 23, 208–216 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Zhou, H., Fisher, R.J. & Papas, T.S. Universal immuno-PCR for ultra-sensitive target protein detection. Nucleic Acids Res. 21, 6038–6039 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lind, K. & Kubista, M. Development and evaluation of three real-time immuno-PCR assemblages for quantification of PSA. J. Immunol. Methods 304, 107–116 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Hendrickson, E.R., Hatfield Truby, T.M., Joerger, R.D., Majarian, W.R. & Ebersole, R.C. High sensitivity multianalyte immunoassay using covalent DNA-labeled antibodies and polymerase chain reaction. Nucleic Acids Res. 23, 522–529 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Niemeyer, C.M. et al. Self-assembly of DNA-streptavidin nanostructures and their use as reagents in immuno-PCR. Nucleic Acids Res. 27, 4553–4561 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Joerger, R.D., Truby, T.M., Hendrickson, E.R., Young, R.M. & Ebersole, R.C. Analyte detection with DNA-labeled antibodies and polymerase chain reaction. Clin. Chem. 41, 1371–1377 (1995).

    CAS  PubMed  Google Scholar 

  10. Heid, C.A., Stevens, J., Livak, K.J. & Williams, P.M. Real time quantitative PCR. Genome Res. 6, 986–994 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Kubista, M. et al. The real-time polymerase chain reaction. Mol. Aspects Med. 27, 95–125 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Adler, M., Wacker, R. & Niemeyer, C.M. A real-time immuno-PCR assay for routine ultrasensitive quantification of proteins. Biochem. Biophys. Res. Commun. 308, 240–250 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Sims, P.W., Vasser, M., Wong, W.L., Williams, P.M. & Meng, Y.G. Immunopolymerase chain reaction using real-time polymerase chain reaction for detection. Anal. Biochem. 281, 230–232 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Niemeyer, C.M., Adler, M. & Blohm, D. Fluorometric polymerase chain reaction (PCR) enzyme-linked immunosorbent assay for quantification of immuno-PCR products in microplates. Anal. Biochem. 246, 140–145 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Maia, M., Takahashi, H., Adler, K., Garlick, R.K. & Wands, J.R. Development of a two-site immuno-PCR assay for hepatitis B surface antigen. J. Virol. Methods 52, 273–286 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Zhang, Z., Irie, R.F., Chi, D.D. & Hoon, D.S. Cellular immuno-PCR. Detection of a carbohydrate tumor marker. Am. J. Pathol. 152, 1427–1432 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Saito, K. et al. Detection of human serum tumor necrosis factor-alpha in healthy donors, using a highly sensitive immuno-PCR assay. Clin. Chem. 45, 665–669 (1999).

    CAS  PubMed  Google Scholar 

  18. Ren, J. et al. Detection of circulating CEA molecules in human sera and leukopheresis of peripheral blood stem cells with E. coli expressed bispecific CEAScFv-streptavidin fusion protein-based immuno-PCR technique. Ann. NY Acad. Sci. 945, 116–118 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Ren, J. et al. Detection of circulating gastric carcinoma-associated antigen MG7-Ag in human sera using an established single determinant immuno-polymerase chain reaction technique. Cancer 88, 280–285 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Adler, M., Schulz, S., Fischer, R. & Niemeyer, C.M. Detection of Rotavirus from stool samples using a standardized immuno-PCR ('Imperacer') method with end-point and real-time detection. Biochem. Biophys. Res. Commun. 333, 1289–1294 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Barletta, J.M., Edelman, D.C. & Constantine, N.T. Lowering the detection limits of HIV-1 viral load using real-time immuno-PCR for HIV-1 p24 antigen. Am. J. Clin. Pathol. 122, 20–27 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Adler, M. et al. Adaptation and performance of an immuno-PCR assay for the quantification of Aviscumine in patient plasma samples. J. Pharm. Biomed. Anal. 39, 972–972 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Schoffski, P. et al. Phase I trial of intravenous aviscumine (rViscumin) in patients with solid tumors: a study of the European Organization for Research and Treatment of Cancer New Drug Development Group. Ann. Oncol. 15, 1816–1824 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. McElhinny, A.S., Kadow, N. & Warner, C.M. The expression pattern of the Qa-2 antigen in mouse preimplantation embryos and its correlation with the Ped gene phenotype. Mol. Hum. Reprod. 4, 966–971 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Barletta, J.M., Edelman, D.C., Highsmith, W.E. & Constantine, N.T. Detection of ultra-low levels of pathologic prion protein in scrapie infected hamster brain homogenates using real-time immuno-PCR. J. Virol. Methods 127, 154–164 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Chye, S.M., Lin, S.R., Chen, Y.L., Chung, L.Y. & Yen, C.M. Immuno-PCR for detection of antigen to Angiostrongylus cantonensis circulating fifth-stage worms. Clin. Chem. 50, 51–57 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Adler, M. et al. Detection of rViscumin in plasma samples by immuno-PCR. Biochem. Biophys. Res. Commun. 300, 757–763 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Case, M.C. et al. Enhanced ultrasensitive detection of structurally diverse antigens using a single immuno-PCR assay protocol. J. Immunol. Methods 223, 93–106 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Sugawara, K. et al. A highly sensitive immuno-polymerase chain reaction assay for human angiotensinogen using the identical first and second polyclonal antibodies. Clin. Chim. Acta. 299, 45–54 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Adler, M., Wacker, R., Booltink, E., Manz, B. & Niemeyer, C.M. Detection of femtogram amounts of biogenic amines using self-assembled DNA–protein nanostructures. Nat. Methods 2, 147–149 (2005).

    Article  CAS  Google Scholar 

  31. Niemeyer, C.M., Wacker, R. & Adler, M. Hapten-functionalized DNA-streptavidin nanocircles as supramolecular reagents in a novel competitive immuno-PCR. Angew. Chem. Int. Ed. 40, 3169–3172 (2001).

    Article  CAS  Google Scholar 

  32. Adler, M. Immuno-PCR as a clinical laboratory tool. Adv. Clin. Chem. 39, 239–292 (2005).

    Article  PubMed  Google Scholar 

  33. Kakizaki, E. et al. Detection of bacterial antigens using immuno-PCR. Lett. Appl. Microbiol. 23, 101–103 (1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

M.A. carried out the immunoassays, analyzed the data and wrote the manuscript; R.W. analyzed the data, prepared figures and wrote the manuscript; and C.M.N. designed and coordinated the research, analyzed the data and wrote the manuscript.

Corresponding authors

Correspondence to Christof M Niemeyer or Ron Wacker.

Ethics declarations

Competing interests

Adler and Wacker declare employment at Chimua Biotec. Niemeyer declares financial interest as a co-founder and share holder of Chimua Biotec.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niemeyer, C., Adler, M. & Wacker, R. Detecting antigens by quantitative immuno-PCR. Nat Protoc 2, 1918–1930 (2007). https://doi.org/10.1038/nprot.2007.267

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2007.267

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing