Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Silencing gene expression by targeting chromosomal DNA with antigene peptide nucleic acids and duplex RNAs

Abstract

The value of recognizing cellular RNA sequences by short interfering RNAs (siRNAs) in mammalian cells is widely appreciated, but what might be learned if it were also possible to recognize chromosomal DNA? Recognition of chromosomal DNA would have many applications, such as inhibiting gene expression, activating gene expression, introducing mutations, and probing chromosome structure and function. We have shown that antigene peptide nucleic acids (agPNAs) and antigene duplex RNAs (agRNAs) block gene expression and probe chromosomal DNA. Here we describe a protocol for designing antigene agents and introducing them into cells. This protocol can also be used to silence expression with PNAs or siRNAs that target mRNA. From preparation of oligomers to analysis of data, experiments with agPNAs and agRNAs require 14 d and 9 d, respectively.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Targeting a transcription start site with agPNAs or agRNAs.
Figure 2: Fluorescent confocal microscopy showing cellular uptake of PNA complexes.
Figure 3: Inhibition of human PR expression by agPNA-peptide conjugates.
Figure 4: Time course for inhibiting the expression of PR-A and PR-B by agPNAs delivered in complex with lipid and DNA.
Figure 5: Inhibiting expression of PR-A and PR-B isoforms by agRNAs.

Similar content being viewed by others

References

  1. Kaihatsu, K., Janowski, B.A. & Corey, D.R. Recognition of duplex DNA by oligonucleotides and peptide nucleic acids. Chem. Biol. 11, 749–758 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Janowski, B.A. et al. Inhibiting transcription of chromosomal DNA using antigene peptide nucleic acids. Nat. Chem. Biol. 1, 210–215 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Janowski, B.A. et al. Inhibiting gene expression at transcription start sites in chromosomal DNA by antigene RNAs. Nat. Chem. Biol. 1, 216–222 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Knauert, M.P. & Glazer, P.M. Triplex forming oligonucleotides: sequence-specific tools for gene targeting. Hum. Mol. Gen. 10, 2243–2251 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Besch, R., Giovannangeli, C., Schuh, T., Kammerbauer, C. & Degitz, K. Characterization and quantification of triple helix formation in chromosomal DNA. J. Mol. Biol. 341, 979–989 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Dervan, P.B. & Edelson, B.S. Recognition of the DNA minor groove by pyrrole-imidizole polyamides. Curr. Opin. Struct. Biol. 13, 284–299 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Dudouet, B. et al. Accessibility of nuclear chromatin by DNA binding polyamides. Chem. Biol. 10, 859–867 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Nielsen, P.G., Egholm, M., Berg, R.H. & Buchardt, O. Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science 254, 1497–1500 (1991).

    Article  CAS  PubMed  Google Scholar 

  9. Hamilton, S.E., Simmons, C.G., Kathriya, I. & Corey, D.R. Cellular delivery of peptide nucleic acids and inhibition of human telomerase. Chem. Biol. 6, 343–351 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Doyle, D.F., Braasch, D.A, Simmons, C.G., Janowski, B.A. & Corey, DR. Intracellular delivery and inhibition of gene expression by peptide nucleic acids. Biochemistry 40, 53–64 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Kaihatsu, K., Huffman, K.E. & Corey, D.R. Cellular uptake, localization, and inhibition of gene expression by PNAs and PNA-peptide conjugates. Biochemistry 43, 14340–14347 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Turner, J.J. et al. Cell-penetrating peptide conjugates of peptide nucleic acids (PNA) as inhibitors of HIV-1 Tat-dependent trans-activation in cells. Nucleic Acids Res. 30, 6837–6849 (2005).

    Article  Google Scholar 

  13. Albertshofer, K. et al. Structure-activity relationship study on a simple cationic peptide motif for cellular delivery of antisense peptide nucleic acid. J. Med. Chem. 48, 6741–6749 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Maier, M.A. et.al. Evaluation of basic amphipathic peptides for cellular delivery of antisense peptide nucleic acids. J. Med. Chem. 49, 2534–2542 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Shiraishi, T. et al. Calcium ions effectively enhance the effect of antisense peptide nucleic acids conjugated to cationic tat and oligoarginine peptides. Chem. Biol. 12, 923–929 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Abes, S. et al. Endosome trapping limits the efficiency of splicing correction by PNA-oligolysine conjugates. J. Control. Release 110, 595–604 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Nielsen, P.E. Addressing the challenges of cellular delivery and bioavailability of peptide nucleic acids (PNA). Q. Rev. Biophys. 39, 1–6 (2006).

    Article  Google Scholar 

  18. Morris, K.V., Chan, S.W., Jacobsen, S.E. & Looney, D.J. Small interfering RNA-induced transcriptional silencing in human cells. Science 305, 1289–1292 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Ting, A.H. et al. Short double-stranded RNA induces transcriptional gene silencing in human cells in the absence of DNA methylation. Nat. Genet. 37, 906–910 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Castanotto, D. et al. Short hairpin RNA-directed cytosine (CpG) methylation of the RASSF1 promoter in HeLa cells. Mol. Ther. 12, 179–183 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Suzuki, K. et al. Prolonged transcriptional silencing and CpG methylation induced by siRNAs targeted to the HIV-1 promoter region. J. RNAi Gene Silencing 1, 66–78 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang, M.-X. et al. Regulation of endothelial nitric oxide synthase by small RNA. Proc. Natl. Acad. Sci. USA 102, 16967–16972 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Weinberg, M.S. et al. The antisense strand of small interfering RNAs directs histone methylation and transcriptional gene silencing in human cells. RNA 12, 256–262 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Corey, D.R. Regulating mammalian transcription with RNA. Trends Biochem. Sci. 30, 655–658 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Morris, K.V. Therapeutic potential of siRNA-mediated transcriptional gene silencing. Biotechniques 40, S7–S13 (2006).

    Article  Google Scholar 

  26. Greenberg, M. in Current Protocols in Molecular Biology 4, 10.1–4.10.11 (1987).

    Google Scholar 

  27. Braasch, D.A. & Corey, D.R. Synthesis, analysis, purification, and intracellular delivery of peptide nucleic acids. Methods 23, 97–107 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Mayfield, L.D. & Corey, D.R. Automated synthesis of peptide nucleic acids (PNAs) and peptide nucleic acid–peptide conjugates. Anal. Biochem. 268, 401–404 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Elbashir, S.M. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Crooke, S.T. Evaluating the mechanism of action of antiproliferative antisense drugs. Antisense Nucleic. Acid Drug Dev. 10, 123–126 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Editorial. Wither RNAi? Nat. Cell Biol. 5, 489–490 (2003).

  32. Kastner, P. et al. Two distinct estrogen-regulated promoters generate transcripts encoding the two functionally different human progesterone receptor isoforms A and B. EMBO J. 9, 1603–1614 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Misrahi, M. et al. Structure of the human progesterone receptor gene. Biochim. Biophys. Acta 1216, 289–292 (1993).

    Article  CAS  PubMed  Google Scholar 

  34. Hashimoto, S. et al. 5′-End SAGE for the analysis of transcriptional start sites. Nat. Biotechnol. 22, 1146–1149.

    Article  CAS  PubMed  Google Scholar 

  35. Yamashita, R. et al. DBTSS: DataBase of Human Transcription Start Sites, progress report 2006. Nucleic Acids Res. D86–D89 (2006).

Download references

Acknowledgements

We thank S. Younger, D. Ly and B. Armitage for comments. This work was supported by the National Institutes of Health (grants NIGMS 60642 and 73042 to D.R.C.), the High-Q Foundation, Applied Biosystems and the Robert A. Welch Foundation (grant I-1244 to D.R.C.).

Author information

Authors and Affiliations

Authors

Contributions

D.R.C. wrote the manuscript and supervised the experiments. B.A.J. and J.H. developed the protocols and assisted in writing the manuscript.

Corresponding authors

Correspondence to Bethany A Janowski or David R Corey.

Ethics declarations

Competing interests

This work was partially funded by Applied Biosystems.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Janowski, B., Hu, J. & Corey, D. Silencing gene expression by targeting chromosomal DNA with antigene peptide nucleic acids and duplex RNAs. Nat Protoc 1, 436–443 (2006). https://doi.org/10.1038/nprot.2006.64

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2006.64

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing