Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Isolation of Arabidopsis nuclei and measurement of gene transcription rates using nuclear run-on assays

Abstract

Isolation of transcriptionally active nuclei from plant tissues is a fundamental first step in many plant molecular biology protocols. Enriched nuclear fractions may be used in “run-on” assays to measure the rate of transcription for any given gene, adding additional resolution to assays of steady-state transcript accumulation such as RNA-gel blots, RT–PCR or microarrays. The protocols presented here streamline, adapt and optimize existing methods for use in Arabidopsis thaliana. Plant materials are ground in hexylene glycol-based buffers and highly enriched nuclear fractions are obtained using Percoll density gradients. Standard and small-scale protocols are presented, along with a tested method for nuclear run-on assays. The entire process may be completed within 3 days. This capability complements the immense body of steady-state transcript measurements and indirectly identifies instances where message turnover may have a critical and/or primary role in regulating gene expression levels.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fractionation by Percoll gradients.
Figure 2: Microscopic images of isolated nuclei.
Figure 3: An example of results from a nuclear run-on assay.

Similar content being viewed by others

References

  1. Alwine, J.C., Kemp, D.J. & Stark, G.R. Method for detection of specific RNAs in agarose gels by transfer to diazobenzyloxymethyl-paper and hybridization with DNA probes. Proc. Natl. Acad. Sci. USA 74, 5350–5354 (1977).

    Article  CAS  Google Scholar 

  2. Delidow, B.C., Peluso, J.J. & White, B.A. Quantitative measurement of mRNAs by polymerase chain reaction. Gene Anal. Tech. 6, 120–124 (1989).

    Article  CAS  Google Scholar 

  3. Higuchi, R., Fockler, C., Dollinger, G. & Watson, R. Kinetic PCR analysis: real-time monitoring of DNA amplification reactions. Biotechnology (NY) 11, 1026–1030 (1993).

    CAS  Google Scholar 

  4. Gutierrez, R.A., Ewing, R.M., Cherry, J.M. & Green, P.J. Identification of unstable transcripts in Arabidopsis by cDNA microarray analysis: rapid decay is associated with a group of touch- and specific clock-controlled genes. Proc. Natl. Acad. Sci. USA 99, 11513–11518 (2002).

    Article  CAS  Google Scholar 

  5. Gutierrez, R.A., MacIntosh, G.C. & Green, P.J. Current perspectives on mRNA stability in plants: multiple levels and mechanisms of control. Trends Plant Sci. 4, 429–438 (1999).

    Article  CAS  Google Scholar 

  6. Bovy, A. et al. Iron-dependent stability of the ferredoxin I transcripts from the cyanobacterial strains Synechococcus species PCC 7942 and Anabaena species PCC 7937. Mol. Microbiol. 7, 429–439 (1993).

    Article  CAS  Google Scholar 

  7. Dickey, L.F., Petracek, M.E., Nguyen, T.T., Hansen, E.R. & Thompson, W.F. Light regulation of Fed-1 mRNA requires an element in the 5′ untranslated region and correlates with differential polyribosome association. Plant Cell 10, 475–484 (1998).

    Article  CAS  Google Scholar 

  8. Maundrell, K. nmt1 of fission yeast. A highly transcribed gene completely repressed by thiamine. J. Biol. Chem. 265, 10857–10864 (1990).

    CAS  PubMed  Google Scholar 

  9. Fornace, A.J. Jr et al. Mammalian genes coordinately regulated by growth arrest signals and DNA-damaging agents. Mol. Cell. Biol. 9, 4196–4203 (1989).

    Article  CAS  Google Scholar 

  10. Anderson, M.B. et al. Blue light-directed destabilization of the pea Lhcb1*4 transcript depends on sequences within the 5′ untranslated region. Plant Cell 11, 1579–1590 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Baerson, S.R. & Kaufman, L.S. Increased rRNA gene activity during a specific window of early pea leaf development. Mol. Cell. Biol. 10, 842–845 (1990).

    Article  CAS  Google Scholar 

  12. Gallagher, T.F. & Ellis, R.J. Light-stimulated transcription of genes for 2 chloroplast polypeptides in isolated pea leaf nuclei. EMBO J 1, 1493–1498 (1982).

    Article  CAS  Google Scholar 

  13. Marrs, K.A. & Kaufman, L.S. Blue-light regulation of transcription for nuclear genes in pea. Proc. Natl. Acad. Sci. USA 86, 4492–4495 (1989).

    Article  CAS  Google Scholar 

  14. Mittler, R. & Zilinskas, B.A. Regulation of pea cytosolic ascorbate peroxidase and other antioxidant enzymes during the progression of drought stress and following recovery from drought. Plant J. 5, 397–405 (1994).

    Article  CAS  Google Scholar 

  15. Giuliano, G. & Scolnik, P.A. Transcription of two photosynthesis-associated nuclear gene families correlates with the presence of chloroplasts in leaves of the variegated tomato ghost mutant. Plant Physiol. 86, 7–9 (1988).

    Article  CAS  Google Scholar 

  16. Silverthorne, J. & Tobin, E.M. Demonstration of transcriptional regulation of specific genes by phytochrome action. Proc. Natl. Acad. Sci. USA 81, 1112–1116 (1984).

    Article  CAS  Google Scholar 

  17. Chan, M.T. & Yu, S.M. The 3′ untranslated region of a rice alpha-amylase gene mediates sugar-dependent abundance of mRNA. Plant J. 15, 685–695 (1998).

    Article  CAS  Google Scholar 

  18. Van Blokland, R., Van der Geest, N., Mol, J.N.M. & Kooter, J.M. Transgene-mediated suppression of chalcone synthase expression in Petunia hybrida results from an increase in RNA turnover. Plant J. 6, 861–877 (1994).

    Article  Google Scholar 

  19. Dean, C., Favreau, M., Bond-Nutter, D., Bedbrook, J. & Dunsmuir, P. Sequences downstream of translation start regulate quantitative expression of two petunia rbcS genes. Plant Cell 1, 201–208 (1989).

    Article  CAS  Google Scholar 

  20. McClure, B.A., Hagen, G., Brown, C.S., Gee, M.A. & Guilfoyle, T.J. Transcription, organization, and sequence of an auxin-regulated gene cluster in soybean. Plant Cell 1, 229–239 (1989).

    Article  CAS  Google Scholar 

  21. Lescure, A.M. et al. Ferritin gene transcription is regulated by iron in soybean cell cultures. Proc. Natl. Acad. Sci. USA 88, 8222–8226 (1991).

    Article  CAS  Google Scholar 

  22. Feinbaum, R.L. & Ausubel, F.M. Transcriptional regulation of the Arabidopsis thaliana chalcone synthase gene. Mol. Cell. Biol. 8, 1985–1992 (1988).

    Article  CAS  Google Scholar 

  23. Hajela, R.K., Horvath, D.P., Gilmour, S.J. & Thomashow, M.F. Molecular cloning and expression of cor (cold-regulated) genes in Arabidopsis thaliana. Plant Physiol. 93, 1246–1252 (1990).

    Article  CAS  Google Scholar 

  24. Hansen, E.R., Petracek, M.E., Dickey, L.F. & Thompson, W.F. The 5′ end of the pea ferredoxin-1 mRNA mediates rapid and reversible light-directed changes in translation in tobacco. Plant Physiol. 125, 770–778 (2001).

    Article  CAS  Google Scholar 

  25. Petracek, M.E. et al. Ferredoxin-1 mRNA is destabilized by changes in photosynthetic electron transport. Proc. Natl. Acad. Sci. USA 95, 9009–9013 (1998).

    Article  CAS  Google Scholar 

  26. Millar, A.J. & Kay, S.A. Circadian control of cab gene transcription and mRNA accumulation in Arabidopsis. Plant Cell 3, 541–550 (1991).

    Article  CAS  Google Scholar 

  27. Folta, K.M. & Kaufman, L.S. Phototropin 1 is required for high-fluence blue-light-mediated mRNA destabilization. Plant Mol. Biol. 51, 609–618 (2003).

    Article  CAS  Google Scholar 

  28. Watson, J.C. & Thompson, W.F. Purification and restriction endonuclease analysis of plant nuclear DNA. Methods Enzymol. 118, 57–75 (1986).

    Article  CAS  Google Scholar 

  29. Honda, S.I., Hongladarom, T. & Laties, G.G. A new isolation medium for plant organelles. J. Exp. Bot. 17, 460–472 (1966).

    Article  CAS  Google Scholar 

  30. Luthe, D.S. & Quatrano, R.S. Transcription in isolated wheat nuclei: I. Isolation of nuclei and elimination of endogenous ribonuclease activity. Plant Physiol. 65, 305–308 (1980).

    Article  CAS  Google Scholar 

  31. Kinkema, M., Fan, W. & Dong, X. Nuclear localization of NPR1 is required for activation of PR gene expression. Plant Cell 12, 2339–2350 (2000).

    Article  CAS  Google Scholar 

  32. Fennoy, S.L. & Bailey-Serres, J. Post-transcriptional regulation of gene expression in oxygen-deprived roots of maize. Plant J. 7, 287–295 (1995).

    Article  CAS  Google Scholar 

  33. Lee, K.Y., Baden, C., Howie, W.J., Bedbrook, J. & Dunsmuir, P. Post-transcriptional gene silencing of ACC synthase in tomato results from cytoplasmic RNA degradation doi:10.1046/j.1365-313X.1997.12051127.x. Plant J. 12, 1127–1137 (1997).

    Article  CAS  Google Scholar 

  34. Deamer, D.W. & Crofts, A. Action of Triton X-100 on chloroplast membranes. Mechanisms of structural and functional disruption. J. Cell Biol. 33, 395–410 (1967).

    Article  CAS  Google Scholar 

  35. Folta, K.M. & Kaufman, L.S. Preparation of transcriptionally active nuclei from etiolated Arabidopsis thaliana. Plant Cell Rep. 19, 504–510 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Scott Nicholson for critical evaluation of this protocol and Dr Ana-Lisa Paul for assistance with microscopy and imaging. This work was performed with startup funding from the University of Florida (KMF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin M Folta.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Folta, K., Kaufman, L. Isolation of Arabidopsis nuclei and measurement of gene transcription rates using nuclear run-on assays. Nat Protoc 1, 3094–3100 (2006). https://doi.org/10.1038/nprot.2006.471

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2006.471

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing