Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Photochemical determination of different DNA structures

Abstract

The various conformations of DNA are thought to have important biological roles. Investigation of the local DNA conformational changes associated with biological events is therefore essential to an understanding of the functions of DNA. We have reported the photoreactivities of 5-halouracil in the five characteristic local DNA structures: the A, B and Z forms, protein-induced DNA kinks and the G-quadruplex form. These studies demonstrate the detailed relationships between the local DNA structures and the photochemical products of photoinduced hydrogen abstraction by the resulting uracil-5-yl radicals, and show that this photochemical method can be used to detect DNA structures. Here, we describe in detail procedures that have been developed in our laboratory for probing DNA conformations by product analysis of photoirradiated 5-halouracil–containing DNA. The protocol includes the preparation of 5-halouracil–containing DNA and the characterization of the photoproducts, and it can be completed in 2 weeks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Flow scheme of the various procedures involved in the product analysis for the five different structures.
Figure 3
Figure 4: The tryptophan residue of Sso7d is efficiently oxidized to N′-formylkynulenine (NFK).
Figure 5
Figure 6
Figure 7: C1′- and C2′α-hydrogen abstraction in B-DNA.
Figure 8: Stereospecific C2′α-hydroxylation in Z-DNA (a) HPLC profiles of UV-irradiated ODN4/ODN5 in the presence of Zα.
Figure 9: Photochemical reaction in protein-induced DNA kink.
Figure 10: Highly efficient photochemical formation of C2′-deoxyribonolacton in the antiparallel G-quadruplex.

Similar content being viewed by others

References

  1. Travers, A.A. DNA conformation and protein binding. Annu. Rev. Biochem. 58, 427–452 (1989).

    Article  CAS  Google Scholar 

  2. Wang, A.H. et al. Molecular structure of a left-handed double helical DNA fragment at atomic resolution. Nature 282, 680–686 (1979).

    Article  CAS  Google Scholar 

  3. Sinden, R.R. DNA Structure and Function (Academic Press, New York, 1994).

    Google Scholar 

  4. Rich, A. & Zhang, S. Timeline: Z-DNA: the long road to biological function. Nat. Rev. Genet. 4, 566–572 (2003).

    Article  CAS  Google Scholar 

  5. Hackett, J.A., Feldser, D.M. & Greider, C.W. Telomere dysfunction increases mutation rate and genomic instability. Cell 106, 275–286 (2001).

    Article  CAS  Google Scholar 

  6. Lei, M., Podell, E.R., Baumann, P. & Cech, T.R. DNA self-recognition in the structure of Pot1 bound to telomeric single-stranded DNA. Nature 426, 198–203 (2003).

    Article  CAS  Google Scholar 

  7. Neidle, S. & Parkinson, G.N. Telomere maintenance as a target for anticancer drug discovery. Nat. Rev. Drug Discov. 1, 383–393 (2002).

    Article  CAS  Google Scholar 

  8. Hurley, L.H. DNA and its associated processes as targets for cancer therapy. Nat. Rev. Cancer 2, 188–200 (2002).

    Article  CAS  Google Scholar 

  9. Mergny, J.-L. et. al. Natural and pharmacological regulation of telomerase. Nucleic Acids Res. 30, 839–865 (2002).

    Article  CAS  Google Scholar 

  10. Hahn, W.C. et al. Inhibition of telomerase limits the growth of human cancer cells. Nat. Med. 5, 1164–1170 (1999).

    Article  CAS  Google Scholar 

  11. Zahler, A.M., Williamson, J.R., Cech, T.R. & Prescott, D.M. Inhibition of telomerase by G-quartet DNA structures. Nature 350, 718–720 (1991).

    Article  CAS  Google Scholar 

  12. Shay, J.W., Zou, Y., Hiyama, E. & Wright, W.E. Telomerase and cancer. Hum. Mol. Genet. 10, 677–685 (2001).

    Article  CAS  Google Scholar 

  13. Liu, R. et al. Regulation of CSF1 promoter by the SWI/SNF-like BAF complex. Cell 106, 309–318 (2001).

    Article  CAS  Google Scholar 

  14. Blackburn, E.H. Structure and function of telomeres. Nature 350, 569–573 (1991).

    Article  CAS  Google Scholar 

  15. Kim, J.L., Nikolov, D.B. & Burley, S.K. Co-crystal structure of TBP recognizing the minor groove of a TATA element. Nature 365, 520–527 (1993).

    Article  CAS  Google Scholar 

  16. Nikolov, D.B. et al. Crystal structure of a human TATA box-binding protein/TATA element complex. Proc. Natl. Acad. Sci. USA 93, 4862–4867 (1996).

    Article  CAS  Google Scholar 

  17. Kim, Y., Geiger, J.H., Hahn, S. & Sigler, P.B. Crystal structure of a yeast TBP/TATA-box complex. Nature 365, 512–520 (1993).

    CAS  Google Scholar 

  18. Werner, M.H. et al. The solution structure of the human ETS1-DNA complex reveals a novel mode of binding and true side chain intercalation. Cell 83, 761–771 (1995).

    Article  CAS  Google Scholar 

  19. Schumacher, M.A., Choi, K.Y., Zalkin, H. & Brennan, R.G. Crystal structure of LacI member, PurR, bound to DNA: minor groove binding by alpha helices. Science 266, 763–770 (1994).

    Article  CAS  Google Scholar 

  20. Werner, M.H., Huth, J.R., Gronenborn, A.M. & Clore, G.M. Molecular basis of human 46X,Y sex reversal revealed from the three-dimensional solution structure of the human SRY-DNA complex. Cell 81, 705–714 (1995).

    Article  CAS  Google Scholar 

  21. Zimmerman, S.B. & Pheiffer, B.H. A direct demonstration that the ethanol-induced transition of DNA is between the A and B forms: an X-ray diffraction study. J. Mol. Biol. 135, 1023–1027 (1979).

    Article  CAS  Google Scholar 

  22. Reid, D.G. Proton nuclear Overhauser effect study of the structure of a deoxyoligonucleotide duplex in aqueous solution. Biochemistry 22, 2019–2025 (1983).

    Article  CAS  Google Scholar 

  23. Clore, G.M. & Gronenborn, A.M. Probing the three-dimensional structures of DNA and RNA oligonucleotides in solution by nuclear Overhauser enhancement measurements. FEBS Lett. 179, 187–198 (1985).

    Article  CAS  Google Scholar 

  24. Xu, Y. & Sugiyama, H. Photochemical approach to probing different DNA structure. Angew. Chem. Int. Ed. Engl. 45, 1354–1362 (2006).

    Article  CAS  Google Scholar 

  25. Sugiyama, H., Tsutsumi, Y. & Saito, I. Highly sequence-selective photoreaction of 5-bromouracil-containing deoxyhexanucleotides. J. Am. Chem. Soc. 112, 6720–6721 (1990).

    Article  CAS  Google Scholar 

  26. Sugiyama, H., Tsutsumi, Y., Fujimoto, K. & Saito, I. Photoinduced deoxyribose C2′ oxidation in DNA. Alkali-dependent cleavage of erythrose-containing sites via a retroaldol reaction. J. Am. Chem. Soc. 115, 4443–4447 (1993).

    Article  CAS  Google Scholar 

  27. Sugiyama, H. et al. Evidence for intrastrand C2′ hydrogen abstraction in photoirradiation of 5-halouracil-containing oligonucleotides by using stereospecifically C2′-deuterated deoxyadenosine. Tetrahedr. Lett. 37, 1805–1808 (1996).

    Article  CAS  Google Scholar 

  28. Sugiyama, H., Fujimoto, K. & Saito, I. Preferential C1′ hydrogen abstraction by an uracilyl radical in a DNA-RNA hybrid. Tetrahedr. Lett. 38, 8057–8060 (1997).

    Article  CAS  Google Scholar 

  29. Kawai, K., Saito, I. & Sugiyama, H. Conformation-dependent photochemistry of 5-halouracil-containing DNA: stereospecific 2′-hydroxylation of deoxyribose in Z-form DNA. J. Am. Chem. Soc. 121, 1391–1392 (1999).

    Article  CAS  Google Scholar 

  30. Oyoshi, T., Kawai, K. & Sugiyama, H. Efficient C2′-hydroxylation of deoxyribose in protein-induced Z-form DNA. J. Am. Chem. Soc. 125, 1526–1531 (2003).

    Article  CAS  Google Scholar 

  31. Xu, Y., Ikeda, R. & Sugiyama, H. 8-Methylguanosine: a powerful Z-DNA stabilizer. J. Am. Chem. Soc. 125, 13519–13524 (2003).

    Article  CAS  Google Scholar 

  32. Oyoshi, T., Wang, A.H.-J. & Sugiyama, H. Photoreactivity of 5-iodouracil-containing DNA-Sso7d complex in solution: the protein-induced DNA kink causes intrastrand hydrogen abstraction from the 5-methyl of thymine at the 5′ side. J. Am. Chem. Soc. 124, 2086–2087 (2002).

    Article  CAS  Google Scholar 

  33. Xu, Y. & Sugiyama, H. Highly efficient photochemical 2′-deoxyribonolactone formation at the diagonal loop of a 5-iodouracil-containing antiparallel G-quartet. J. Am. Chem. Soc. 126, 6274–6279 (2004).

    Article  CAS  Google Scholar 

  34. Weitzmann, M.N., Woodford, K.J. & Usdin, K. The development and use of a DNA polymerase arrest assay for the evaluation of parameters affecting intrastrand tetraplex formation. J. Biol. Chem. 271, 20958–20964 (1996).

    Article  CAS  Google Scholar 

  35. Nevins, J.R. The Rb/E2F pathway and cancer. Hum. Mol. Genet. 10, 699–703 (2001).

    Article  CAS  Google Scholar 

  36. Willis, M.C. et al. Photocrosslinking of 5-iodouracil-substituted RNA and DNA to proteins. Science 262, 1255–1257 (1993).

    Article  CAS  Google Scholar 

  37. Ito, T. & Rokita, S.E. Excess electron transfer from an internally conjugated aromatic amine to 5-bromo-2′-deoxyuridine in DNA. J. Am. Chem. Soc. 125, 11480–11481 (2003).

    Article  CAS  Google Scholar 

  38. Manetto, A., Breeger, S., Chatgilialoglu, C. & Carell, T. Complex sequence dependence by excess-electron transfer through DNA with different strength electron acceptors. Angew. Chem. Int. Ed. Engl. 45, 318–321 (2005).

    Article  Google Scholar 

  39. Watanabe, T., Bando, T., Xu, Y., Tashiro, R. & Sugiyama, H. Efficient generation of 2′-deoxyuridin-5-yl at 5′-(G/C)AA(X)U(X)U-3′ (X = Br, I) sequences in duplex DNA under UV irradiation. J. Am. Chem. Soc. 127, 44–45 (2005).

    Article  CAS  Google Scholar 

  40. Tashiro, R., Wang, A.H.-J. & Sugiyama, H. Photoreactivation of DNA by an archaeal nucleoprotein Sso7d. Proc. Natl. Acad. Sci. USA 103, 16655–16659 (2006).

    Article  CAS  Google Scholar 

  41. Sugiyama, H. New synthetic method of 5-formyluracil-containing oligonucleotides and their melting behavior. Tetrahedr. Lett. 37, 9067–9070 (1996).

    Article  CAS  Google Scholar 

  42. Sugiyama, H. et al. Synthesis, structure and thermodynamic properties of 8-methylguanine-containing oligonucleotides: Z-DNA under physiological salt conditions. Nucleic Acids Res. 24, 1272–1278 (1996).

    Article  CAS  Google Scholar 

  43. Berger, I. et al. Spectroscopic characterization of a DNA-binding domain, Z, from the editing enzyme, dsRNA adenosine deaminase: evidence for left-handed Z-DNA in the Z-DNA complex. Biochemistry 37, 13313–13315 (1998).

    Article  CAS  Google Scholar 

  44. Gao, Y.-G. et al. The crystal structure of the hyperthermophile chromosomal protein Sso7d bound to DNA. Nat. Struct. Biol. 5, 782–785 (1998).

    Article  CAS  Google Scholar 

  45. Schwartz, T., Rould, M.A., Lowenhaupt, K., Herbert, A. & Rich, A. Crystal structure of the Zα domain of the human editing enzyme ADAR1 bound to left-handed Z-DNA. Science 284, 1841–1845 (1999).

    Article  CAS  Google Scholar 

  46. Wang, Y. & Patel, D.J. Solution structure of the human telomeric repeat d[AG3(T2AG3)3] G-tetraplex. Structure 1, 263–282 (1993).

    Article  CAS  Google Scholar 

  47. Parkinson, G.N., Lee, M.P. & Neidle, S. Crystal structure of parallel quadruplexes from human telomeric DNA. Nature 417, 876–880 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was partly supported by a Grant-in-Aid for Priority Research from the Ministry of Education, Science, Sports, and Culture and a grant from Solution Oriented Research for Science and Technology of Japan Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Sugiyama.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Y., Tashiro, R. & Sugiyama, H. Photochemical determination of different DNA structures. Nat Protoc 2, 78–87 (2007). https://doi.org/10.1038/nprot.2006.467

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2006.467

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing