Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Development of a highly reproducible three-dimensional organotypic model of the oral mucosa

Abstract

In this report we describe the development of a standardized three-dimensional (3D) system of the human oral mucosa based on an immortalized human oral keratinocyte cell line (OKF6/TERT-2). The procedure takes approximately 2–3 weeks to complete and includes three main stages: preparation of collagen-embedded fibroblasts, addition of the mucosal component and airlifting of cultures to ensure adequate differentiation/stratification. This procedure results in a multilayer epithelial structure in which layers are organized similarly to the cells in native oral mucosa. Specifically, this model system consists of a stratum basale, having one layer of columnar to round cells, a relatively flattened stratum spinosum and stratum granulosum, and a non-keratinizing stratum corneum. This 3D system resembles the commercially available system based on the cell line TR146 (SkinEthic), with the exception that our model system does not contain dyskeratotic changes and has a submucosal component, and thus better represents the normal human mucosa and submucosa.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Histologic characterization of the 3D model of oral mucosa.
Figure 3: Application of the 3D model of the oral mucosa in the study of host–pathogen interactions.

Similar content being viewed by others

References

  1. Steele, C. & Fidel, P.L., Jr. Cytokine and chemokine production by human oral and vaginal epithelial cells in response to Candida albicans. Infect. Immun. 70, 577–583 (2002).

    Article  CAS  Google Scholar 

  2. Dongari-Bagtzoglou, A.I. & Kashleva, H. Candida albicans triggers interleukin-8 secretion by oral epithelial cells. Microb. Pathogen. 34, 169–177 (2003).

    Article  CAS  Google Scholar 

  3. Dongari-Bagtzoglou, A.I. & Kashleva, H. Granulocyte–macrophage colony-stimulating factor responses of oral epithelial cells to Candida albicans. Oral Microbiol. Immunol. 18, 165–170 (2003).

    Article  CAS  Google Scholar 

  4. Dongari-Bagtzoglou, A.I., Kashleva, H. & Villar, C.C. Bioactive interleukin-1α is cytolytically released from Candida albicans-infected oral epithelial cells. Med. Mycol. 42, 531–541 (2004).

    Article  CAS  Google Scholar 

  5. Krisanaprakornkit, S., Weinberg, A., Perez, C.N. & Dale, B.A. Expression of the peptide antibiotic human beta-defensin 1 in cultured gingival epithelial cells and gingival tissue. Infect. Immun. 66, 4222–4228 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Oda, D. & Watson, E. Human oral epithelial cell culture I. Improved conditions for reproducible culture in serum-free medium. In Vitro Cell. Dev. Biol. 26, 589–95 (1990).

    Article  CAS  Google Scholar 

  7. Dongari-Bagtzoglou, A., Wen, K. & Lamster, I.B. Candida albicans triggers interleukin-6 and interleukin-8 responses by oral fibroblasts in vitro. Oral Microbiol. Immunol. 14, 364–370 (1999).

    Article  CAS  Google Scholar 

  8. Dongari-Bagtzoglou, A.I. & Kashleva, H. Development of a novel three-dimensional in vitro model of oral Candida infection. Microb. Pathogen. 40, 271–278 (2006).

    Article  CAS  Google Scholar 

  9. Cox, G., Gauldie, J. & Jordana, M. Bronchial epithelial cell-derived cytokines (G-CSF and GM-CSF) promote the survival of peripheral blood neutrophils in vitro. Am. J. Respir. Cell. Mol. Biol. 7, 507–513 (1992).

    Article  CAS  Google Scholar 

  10. Devalia, J.L., Bayram, H., Abdelaziz, M.M., Sapsford, R.J. & Davies, R.J. Differences between cytokine release from bronchial epithelial cells of asthmatic patients and non-asthmatic subjects: effect of exposure to diesel exhaust particles. Int. Arch. Allergy Immunol. 118, 437–439 (1999).

    Article  CAS  Google Scholar 

  11. Feucht, E.C., DeSanti, C.L. & Weinberg, A. Selective induction of human beta-defensin mRNAs by Actinobacillus actinomycetemcomitants in primary and immortalized oral epithelial cells. Oral Microbiol. Immunol. 18, 359–363 (2003).

    Article  CAS  Google Scholar 

  12. Radyuk, S.N., Mericko, P.A., Popova, T.G., Grene, E. & Alibek, K. In vitro-generated respiratory mucosa: a new tool to study inhalational anthrax. Biochem. Biophys. Res. Commun. 305, 624–632 (2003).

    Article  CAS  Google Scholar 

  13. Sacks, P.G. Cell, tissue and organ culture as in vitro models to study the biology of squamous cell carcinomas of the head and neck. Cancer Metast. Rev. 15, 27–51 (1996).

    Article  CAS  Google Scholar 

  14. Kimball, J.R., Nittayananta, W., Klausner, M., Chung, W.O. & Dale, B.A. Antimicrobial barrier of an in vitro oral epithelial model. Arch. Oral Biol. 51, 775–783 (2006).

    Article  CAS  Google Scholar 

  15. Schaller, M., Mailhammer, R., Grassl, G., Sander, C.A., Hube, B. & Korting, H.C. Infection of human oral epithelia with Candida species induces cytokine expression correlated to the degree of virulence. J. Invest. Dermatol. 118, 652–657 (2002).

    Article  CAS  Google Scholar 

  16. Korting, H.C., Patzak, U., Schaller, M. & Maibach, H.I. A model of human cutaneous candidosis based on reconstructed human epidermis for the light and electron microscopic study of pathogenesis and treatment. J. Infect. 36, 259–267 (1998).

    Article  CAS  Google Scholar 

  17. Maruguchi, T., Maruguchi, Y., Suzuki, S., Matsuda, K., Toda, K. & Isshiki, N. A new skin equivalent: keratinocytes proliferated and differentiated on collagen sponge containing fibroblasts. Plast. Reconstr. Surg. 93, 537–544 (1994).

    Article  CAS  Google Scholar 

  18. Sugihara, H., Toda, S., Yonemitsu, N. & Watanabe, K. Effects of fat cells on keratinocytes and fibroblasts in a reconstructed rat skin model using collagen gel matrix culture. Br. J. Dermatol. 144, 244–253 (2001).

    Article  CAS  Google Scholar 

  19. Kautsky, M.B., Fleckman, P. & Dale, B.A. Retinoic acid regulates oral epithelial differentiation by two mechanisms. J. Invest. Dermatol. 104, 546–553 (1995).

    Article  CAS  Google Scholar 

  20. Mostefaoui, Y., Claveau, I. & Rouabhia, M. In vitro analyses of tissue structure and interleukin-1β expression and production by human oral mucosa in response to Candida albicans infections. Cytokine 25, 162–171 (2004).

    Article  CAS  Google Scholar 

  21. Mostefaoui, Y., Bart, C., Frenette, M. & Rouabhia, M. Candida albicans and Streptococcus salivarius modulate IL-6, IL-8 and TNFα expression and secretion by engineered human oral mucosa cells. Cell. Microbiol. 6, 1085–1096 (2004).

    Article  CAS  Google Scholar 

  22. Southgate, J., Williams, H.K., Trejdosiewicz, L.K. & Hodges, G.M. Primary culture of human oral epithelial cells. Growth requirements and expression of differentiated characteristics. Lab. Invest. 56, 211–223 (1987).

    CAS  PubMed  Google Scholar 

  23. Dickson, M.A., Hahn, W.C., Ino, Y., Ronfard, V., Wu, J.Y., Weinberg, R.A., Louis, D.N., Li, F.P. & Rheinwald, J.G. Human keratinocytes that express hTERT and also bypass a p16 INK4a-enforced mechanism that limits life span become immortal yet retain normal growth and differentiation characteristics. Mol. Cell. Biol. 20, 1436–1447 (2000).

    Article  CAS  Google Scholar 

  24. Parenteau, N. Skin equivalents. in Keratinocyte Methods (eds. Leigh, I. & Watt, F.) 45–54 (Cambridge University Press, U.K., 1994).

    Google Scholar 

  25. Schon, M. & Rheinwald, J.G. A limited role for retinoic acid and retinoic acid receptors RARa and RARb in regulating Keratin 19 expression and keratinization in oral and epidermal keratinocytes. J. Invest. Dermatol. 107, 428–438 (1996).

    Article  CAS  Google Scholar 

  26. Meyers, C., Frattini, M.G. & Laimins, L.A. Tissue culture techniques for the study of human papillomaviruses in stratified epithelia. in Cell Biology: A Laboratory Handbook (Ed. Celis, J.E.) 491–499 (Academic Press Inc., 1994).

    Google Scholar 

  27. Rouabhia, M. In vitro production and transplantation of immunologically active skin equivalents. Lab. Invest. 75, 503–517 (1996).

    CAS  PubMed  Google Scholar 

  28. Dumont, S., Valladeu, J., Bechetoille, N., Gofflo, S. & Marechal, S. et al. When integrated in a subepithelial mucosal layer equivalent, dentritic cells keep their immature stage and their ability to replicate Type R5 HIV Type 1 strains in the absence of T cell subsets. AIDS Res. Hum. Retroviruses 20, 383–397 (2004).

    Article  Google Scholar 

  29. Schaller, M., Korting, H.C., Schafer, W., Bastert, J., Chen, W. & Hube, B. Secreted aspartic proteinase (Sap) activity contributes to tissue damage in a model of human oral candidosis. Mol. Microbiol. 34, 169–180 (1999).

    Article  CAS  Google Scholar 

  30. Castillon, N. et al. Polarized expression of cystic fibrosis transmembrane conductance regulator and associated epithelial proteins during the regeneration of human airway surface epithelium in three-dimensional culture. Lab. Invest. 82, 989–998 (2002).

    Article  CAS  Google Scholar 

  31. Costea, D.E., Johannessen, A.C. & Vintermyr, O.K. Fibroblast control on epithelial differentiation is gradually lost during in vitro tumor progression. Differentiation 73, 134–141 (2005).

    Article  CAS  Google Scholar 

  32. Downer, C.S. & Speight, P.M. E-cadherin expression in normal, hyperplastic and malignant oral epithelium. Eur. J. Cancer B. Oral Oncol. 29, 303–305 (1993).

    Article  Google Scholar 

  33. Gasparoni, A., Fonzi, L., Schneider, G.B., Wertz, P.W., Johnson, G.K. & Squier, C.A. Comparison of differentiation markers between normal and two squamous cell carcinoma cell lines in culture. Arch. Oral Biol. 49, 653–664 (2004).

    Article  CAS  Google Scholar 

  34. Waelti, E.R. et al. Co-culture of human keratinocytes on post-mitotic human dermal fibroblast feeder cells: production of large amounts of interleukin 6. J. Invest. Dermatol. 98, 805–808 (1992).

    Article  CAS  Google Scholar 

  35. Squier, C.A. & Finkelstein, M.W. Oral mucosa. in Ten Cate's Oral Histology, 6th Edition (ed. Nanci, A.) (Mosby Inc., Orlando, FL, 2003).

    Google Scholar 

  36. Barreca, A. et al. In vitro paracrine regulation of human keratinocyte growth by fibroblast-derived insulin-like growth factors. J. Cell. Physiol. 151, 262–268 (1992).

    Article  CAS  Google Scholar 

  37. Villar, C.C., Kashleva, H., Mitchell, A.P. & Dongari-Bagtzoglou, A.I. Invasive phenotype of Candida albicans affects the host proinflammatory response to infection. Infect. Immun. 273, 4588–4595 (2005).

    Article  Google Scholar 

  38. de Brugerolle, A. et al. Predictivity of an in vitro model for acute and chronic skin irritation (SkinEthic) applied to the testing of topical vehicles. Cell Biol. Toxicol. 15, 121–135 (1999).

    Article  Google Scholar 

  39. Reichart, P.A., Philipsen, H.P., Schmidt-Westhausen, A. & Samaranayake, L.P. Pseudomembranous oral candidiasis in HIV infection: ultrastructural findings. J Oral Pathol. Med. 24, 276–281 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by USPHS Research Grant RO1 DE13986 to ADB from the National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Dongari-Bagtzoglou.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dongari-Bagtzoglou, A., Kashleva, H. Development of a highly reproducible three-dimensional organotypic model of the oral mucosa. Nat Protoc 1, 2012–2018 (2006). https://doi.org/10.1038/nprot.2006.323

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2006.323

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing