Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Nodule cysteine-rich peptides maintain a working balance during nitrogen-fixing symbiosis

Abstract

The nitrogen-fixing symbiosis between legumes and rhizobia is highly relevant to human society and global ecology. One recent breakthrough in understanding the molecular interplay between the plant and the prokaryotic partner is that, at least in certain legumes, the host deploys a number of antimicrobial peptides, called nodule cysteine-rich (NCR) peptides, to control the outcome of this symbiosis. Under this plant dominance, the bacteria are subject to the sub-lethal toxicity of these antimicrobial peptides, resulting in limited reproductive potential. However, recent genetic studies have added unexpected twists to this mechanism: certain NCR peptides are essential for the bacteria to adapt to the intracellular environment needed for a successful symbiosis, and the absence of these peptides can break down the mutualism. Meanwhile, some rhizobial strains have evolved a peptidase to specifically degrade these antimicrobial peptides, allowing the bacteria to escape host control. These findings challenge the preconceptions about ‘antimicrobial’ peptides, supporting the notion that their role in biotic interactions extends beyond toxicity to the microbial partners.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Rhizobia bacteroids undergo differentiation inside Medicago nodules.
Figure 2: Representative sequences of M. truncatula NCR peptides.
Figure 3: Model for the functions of NCR169, NCR211, and the HrrP peptidase in symbiotic nodule cells.
Figure 4: A proposed relationship between the effect of NCR peptides, the fate of bacteroids and the outcome of the symbiosis.

Similar content being viewed by others

References

  1. Udvardi, M. & Poole, P. S. Transport and metabolism in legume–rhizobia symbioses. Annu. Rev. Plant Biol. 64, 781–805 (2013).

    Article  CAS  Google Scholar 

  2. Franssen, H. J., Vijn, I., Yang, W. C. & Bisseling, T. Developmental aspects of the Rhizobium–legume symbiosis. Plant Mol. Biol. 19, 89–107 (1992).

    Article  CAS  Google Scholar 

  3. Mergaert, P. et al. Eukaryotic control on bacterial cell cycle and differentiation in the Rhizobium–legume symbiosis. Proc. Natl Acad. Sci. USA 103, 5230–5235 (2006).

    Article  CAS  Google Scholar 

  4. Lavin, M., Doyle, J. J. & Palmer, J. D. Evolutionary significance of the loss of the chloroplast-DNA inverted repeat in the leguminosae subfamily Papilionoideae. Evolution 44, 390–402 (1990).

    Article  CAS  Google Scholar 

  5. Brewin, N. J. Development of the legume root nodule. Annu. Rev. Cell Biol. 7, 191–226 (1991).

    Article  CAS  Google Scholar 

  6. Wang, D. et al. A nodule-specific protein secretory pathway required for nitrogen-fixing symbiosis. Science 327, 1126–1129 (2010).

    Article  CAS  Google Scholar 

  7. Limpens, E. et al. Medicago N2-fixing symbiosomes acquire the endocytic identity marker Rab7 but delay the acquisition of vacuolar identity. Plant Cell 21, 2811–2828 (2009).

    Article  CAS  Google Scholar 

  8. Ivanov, S. et al. Rhizobium–legume symbiosis shares an exocytotic pathway required for arbuscule formation. Proc. Natl Acad. Sci. USA 109, 8316–8321 (2012).

    Article  CAS  Google Scholar 

  9. Pan, H. et al. A symbiotic SNARE protein generated by alternative termination of transcription. Nat. Plants 2, 15197 (2016).

    Article  CAS  Google Scholar 

  10. Van de Velde, W. et al. Plant peptides govern terminal differentiation of bacteria in symbiosis. Science 327, 1122–1126 (2010).

    Article  CAS  Google Scholar 

  11. Mergaert, P. et al. A novel family in Medicago truncatula consisting of more than 300 nodule-specific genes coding for small, secreted polypeptides with conserved cysteine motifs. Plant Physiol. 132, 161–173 (2003).

    Article  CAS  Google Scholar 

  12. Alunni, B. & Gourion, B. Terminal bacteroid differentiation in the legume–Rhizobium symbiosis: nodule-specific cysteine-rich peptides and beyond. New Phytol. 211, 411–417 (2016).

    Article  CAS  Google Scholar 

  13. Guefrachi, I. et al. Extreme specificity of NCR gene expression in Medicago truncatula. BMC Genomics 15, 712–728 (2014).

    Article  Google Scholar 

  14. Mikuláss, K. R. et al. Antimicrobial nodule-specific cysteine-rich peptides disturb the integrity of bacterial outer and inner membranes and cause loss of membrane potential. Ann. Clin. Microbiol. Antimicrob. 15, 43 (2016).

    Article  Google Scholar 

  15. Haag, A. F. et al. Role of cysteine residues and disulfide bonds in the activity of a legume root nodule-specific, cysteine-rich peptide. J. Biol. Chem. 287, 10791–10798 (2012).

    Article  CAS  Google Scholar 

  16. Horváth, B. et al. Loss of the nodule-specific cysteine rich peptide, NCR169, abolishes symbiotic nitrogen fixation in the Medicago truncatula dnf7 mutant. Proc. Natl Acad. Sci. USA 112, 15232–15237 (2015).

    Article  Google Scholar 

  17. Shabab, M. et al. Disulfide cross-linking influences symbiotic activities of nodule peptide NCR247. Proc. Natl Acad. Sci. USA 113, 10157–10162 (2016).

    Article  CAS  Google Scholar 

  18. Roux, B. et al. An integrated analysis of plant and bacterial gene expression in symbiotic root nodules using laser-capture microdissection coupled to RNA sequencing. Plant J. 77, 817–837 (2014).

    Article  CAS  Google Scholar 

  19. Maróti, G. & Kondorosi, É. Nitrogen-fixing Rhizobium–legume symbiosis: are polyploidy and host peptide-governed symbiont differentiation general principles of endosymbiosis? Front. Microbiol. 5, 326 (2014).

    PubMed  PubMed Central  Google Scholar 

  20. Marx, H. et al. A proteomic atlas of the legume Medicago truncatula and its nitrogen-fixing endosymbiont Sinorhizobium meliloti. Nat. Biotechnol. 34, 1198–1205 (2016).

    Article  CAS  Google Scholar 

  21. Farkas, A. et al. Medicago truncatula symbiotic peptide NCR247 contributes to bacteroid differentiation through multiple mechanisms. Proc. Natl Acad. Sci. USA 111, 5183–5188 (2014).

    Article  CAS  Google Scholar 

  22. Penterman, J. et al. Host plant peptides elicit a transcriptional response to control the Sinorhizobium meliloti cell cycle during symbiosis. Proc. Natl Acad. Sci. USA 111, 3561–3566 (2014).

    Article  CAS  Google Scholar 

  23. Alkhalfioui, F. et al. A novel type of thioredoxin dedicated to symbiosis in legumes. Plant Physiol. 148, 424–435 (2008).

    Article  CAS  Google Scholar 

  24. Ribeiro, C. W. et al. Regulation of differentiation of nitrogen-fixing bacteria by microsymbiont targeting of plant thioredoxin s1. Curr. Biol. 27, 250–256 (2017).

    Article  CAS  Google Scholar 

  25. Oono, R. & Denison, R. F. Comparing symbiotic efficiency between swollen versus nonswollen rhizobial bacteroids. Plant Physiol. 154, 1541–1548 (2010).

    Article  CAS  Google Scholar 

  26. Kim, M. et al. An antimicrobial peptide essential for bacterial survival in the nitrogen-fixing symbiosis. Proc. Natl Acad. Sci. USA 112, 15238–15243 (2015).

    Article  CAS  Google Scholar 

  27. Xi, J., Chen, Y., Nakashima, J., Wang, S.-M. & Chen, R. Medicago truncatula esn1 defines a genetic locus involved in nodule senescence and symbiotic nitrogen fixation. Mol. Plant Microbe Interact. 26, 893–902 (2013).

    Article  CAS  Google Scholar 

  28. Nallu, S., Silverstein, K. A., Zhou, P., Young, N. D. & VandenBosch, K. A. Patterns of divergence of a large family of nodule cysteine-rich peptides in accessions of Medicago truncatula. Plant J. 78, 697–705 (2014).

    Article  CAS  Google Scholar 

  29. Crook, M. B. et al. Rhizobial plasmids that cause impaired symbiotic nitrogen fixation and enhanced host invasion. Mol. Plant Microbe Interact. 25, 1026–1033 (2012).

    Article  CAS  Google Scholar 

  30. Liu, J., Yang, S., Zheng, Q. & Zhu, H. Identification of a dominant gene in Medicago truncatula that restricts nodulation by Sinorhizobium meliloti strain Rm41. BMC Plant Biol. 14, 167–176 (2014).

    Article  Google Scholar 

  31. Perret, X., Staehelin, C. & Broughton, W. J. Molecular basis of symbiotic promiscuity. Microbiol. Mol. Biol. Rev. 64, 180–201 (2000).

    Article  CAS  Google Scholar 

  32. Radutoiu, S. et al. LysM domains mediate lipochitin-oligosaccharide recognition and Nfr genes extend the symbiotic host range. EMBO J. 26, 3923–3935 (2007).

    Article  CAS  Google Scholar 

  33. Yang, S., Tang, F., Gao, M., Krishnan, H. B. & Zhu, H. R gene-controlled host specificity in the legume–rhizobia symbiosis. Proc. Natl Acad. Sci. USA 107, 18735–18740 (2010).

    Article  CAS  Google Scholar 

  34. Okazaki, S., Kaneko, T., Sato, S. & Saeki, K. Hijacking of leguminous nodulation signaling by the rhizobial type III secretion system. Proc. Natl Acad. Sci. USA 110, 17131–17136 (2013).

    Article  CAS  Google Scholar 

  35. Kawaharada, Y. et al. Receptor-mediated exopolysaccharide perception controls bacterial infection. Nature 523, 308–312 (2015).

    Article  CAS  Google Scholar 

  36. Montiel, J. et al. Terminal bacteroid differentiation is associated with variable morphological changes in legume species belonging to the inverted repeat-lacking clade. Mol. Plant Microbe Interact. 29, 210–219 (2015).

    Article  Google Scholar 

  37. Czernic, P. et al. Convergent evolution of endosymbiont differentiation in Dalbergioid and IRLC legumes mediated by nodule-specific cysteine-rich peptides. Plant Physiol. 169, 1254–1265 (2015).

    Article  Google Scholar 

  38. Tiricz, H. et al. Antimicrobial nodule-specific cysteine-rich peptides induce membrane depolarization associated changes in the transcriptome of Sinorhizobium meliloti. Appl. Environ. Microbiol. 79, 6737–6746 (2013).

    Article  CAS  Google Scholar 

  39. Haag, A. F. et al. Protection of Sinorhizobium against host cysteine-rich antimicrobial peptides is critical for symbiosis. PLoS Biol. 9, e1001169 (2011).

    Article  CAS  Google Scholar 

  40. Marlow, V. L. et al. Essential role for the BacA protein in the uptake of a truncated eukaryotic peptide in Sinorhizobium meliloti. J. Bacteriol. 191, 1519–1527 (2009).

    Article  CAS  Google Scholar 

  41. Guefrachi, I. et al. Bradyrhizobium BclA is a peptide transporter required for bacterial differentiation in symbiosis with Aeschynomene legumes. Mol. Plant Microbe Interact. 28, 1155–1166 (2015).

    Article  CAS  Google Scholar 

  42. Price, P. A. et al. Rhizobial peptidase HrrP cleaves host-encoded signaling peptides and mediates symbiotic compatibility. Proc. Natl Acad. Sci. USA 112, 15244–15249 (2015).

    Article  CAS  Google Scholar 

  43. Lew, R. A. The zinc metallopeptidase family: new faces, new functions. Protein Pep. Lett. 11, 407–414 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by USDA National Institute of Food and Agriculture AFRI award 2015-67013-22915 and National Science Foundation IOS program Award 1557994.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Wang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, H., Wang, D. Nodule cysteine-rich peptides maintain a working balance during nitrogen-fixing symbiosis. Nature Plants 3, 17048 (2017). https://doi.org/10.1038/nplants.2017.48

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nplants.2017.48

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing