Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Vortex arrays in neutral trapped Fermi gases through the BCS–BEC crossover

Abstract

Vortex arrays in type-II superconductors reflect the translational symmetry of an infinite system. There are cases, however, such as ultracold trapped Fermi gases and the crust of neutron stars, where finite-size effects make it complex to account for the geometrical arrangement of vortices. Here, we self-consistently generate these arrays of vortices at zero and finite temperature through a microscopic description of the non-homogeneous superfluid based on a differential equation for the local order parameter, obtained by coarse graining the Bogoliubov–de Gennes (BdG) equations. In this way, the strength of the inter-particle interaction is varied along the BCS–BEC crossover, from largely overlapping Cooper pairs in the Bardeen–Cooper–Schrieffer (BCS) limit to dilute composite bosons in the Bose–Einstein condensed (BEC) limit. Detailed comparison with two landmark experiments on ultracold Fermi gases, aimed at revealing the presence of the superfluid phase, brings out several features that make them relevant for other systems in nature as well.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Arrays of vortices at unitarity for Ω = 0.8  Ωr.
Figure 2: Comparing the number of vortices with the experimental data.
Figure 3: Dependence of the moment of inertia on the angular frequency.
Figure 4: Comparison with the experimental data for the moment of inertia at unitarity.

Similar content being viewed by others

References

  1. Tinkham, M. Introduction to Superconductivity (Krieger, 1975).

    Google Scholar 

  2. Abrikosov, A. A. Fundamentals of the Theory of Metals (North-Holland, 1988).

    Google Scholar 

  3. Ring, P. & Schuck, P. The Nuclear Many-Body Problem (Springer, 2004).

    Google Scholar 

  4. Ketterle, W. & Zwierlein, M. W. in Proceedings of the International School of Physics ‘Enrico Fermi’, Course CLXIV (eds Inguscio, M., Ketterle, W. & Salomon, C.) 95–287 (IOS Press, 2008).

    Google Scholar 

  5. Fetter, A. L. Rotating trapped Bose–Einstein condensates. Rev. Mod. Phys. 81, 647–691 (2009).

    Article  ADS  Google Scholar 

  6. Lin, Y.-J. et al. Bose–Einstein condensate in a uniform light-induced vector potential. Phys. Rev. Lett. 102, 130401 (2009).

    Article  ADS  Google Scholar 

  7. Lin, Y.-J., Compton, R. L., Jiménez García, K., Porto, J. V. & Spielman, I. B. Synthetic magnetic fields for ultracold neutral atoms. Nature 462, 628–632 (2009).

    Article  ADS  Google Scholar 

  8. Dalibard, J., Gerbier, F., Juzeliūnas, G. & Öhberg, P. Artificial gauge potentials for neutral atoms. Rev. Mod. Phys. 83, 1523–1543 (2011).

    Article  ADS  Google Scholar 

  9. Bloch, I., Dalibard, J. & Zwerger, W. Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885–964 (2008).

    Article  ADS  Google Scholar 

  10. Giorgini, S., Pitaevskii, L. P. & Stringari, S. Theory of ultracold atomic Fermi gases. Rev. Mod. Phys. 80, 1215–1274 (2008).

    Article  ADS  Google Scholar 

  11. Fano, U. Sullo spettro di assorbimento dei gas nobili presso il limite dello spettro d’arco. Nuovo Cimento. 12, 154–161 (1935).

    Article  Google Scholar 

  12. Fano, U. Effects of configuration interaction on intensities and phase shifts. Phys. Rev. 124, 1866–1878 (1961).

    Article  ADS  Google Scholar 

  13. Feshbach, H. A unified theory of nuclear reactions. II. Ann. Phys. 19, 287–313 (1962).

    Article  ADS  MathSciNet  Google Scholar 

  14. Chin, C., Grimm, R., Julienne, P. & Tiesinga, E. Feshbach resonances in ultracold gases. Rev. Mod. Phys. 82, 1225–1286 (2010).

    Article  ADS  Google Scholar 

  15. Avogadro, P., Barranco, F., Broglia, R. A. & Vigezzi, E. Vortex-nucleus interaction in the inner crust of neutron stars. Nucl. Phys. A 811, 378–412 (2008).

    Article  ADS  Google Scholar 

  16. Chamel, N. & Haensel, P. Physics of neutron star crusts. Living Rev. Relativ. 11, 10 (2008).

    Article  ADS  Google Scholar 

  17. Zwierlein, M. W., Abo-Shaeer, J. R., Schirotzek, A., Schunck, C. H. & Ketterle, W. Vortices and superfluidity in a strongly interacting Fermi gas. Nature 435, 1047–1051 (2005).

    Article  ADS  Google Scholar 

  18. Riedl, S., Sánchez Guajardo, E. R., Kohstall, C., Hecker Denschlag, J. & Grimm, R. Superfluid quenching of the moment of inertia in a strongly interacting Fermi gas. New J. Phys. 13, 035003 (2011).

    Article  ADS  Google Scholar 

  19. de Gennes, P. G. Superconductivity of Metals and Alloys Ch. 5 (Benjamin, 1966).

    MATH  Google Scholar 

  20. Simonucci, S. & Strinati, G. C. Equation for the superfluid gap obtained by coarse graining the Bogoliubov–de Gennes equations throughout the BCS–BEC crossover. Phys. Rev. B 89, 054511 (2014).

    Article  ADS  Google Scholar 

  21. Nygaard, N., Bruun, G. M., Clark, C. W. & Feder, D. L. Microscopic structure of a vortex line in a dilute superfluid Fermi gas. Phys. Rev. Lett. 90, 210402 (2003).

    Article  ADS  Google Scholar 

  22. Chien, C.-C., He, Y., Chen, Q. & Levin, K. Ground-state description of a single vortex in an atomic Fermi gas: From BCS to Bose–Einstein condensation. Phys. Rev. A 73, 041603 (2006).

    Article  ADS  Google Scholar 

  23. Sensarma, R., Randeria, M. & Ho, T.-L. Vortices in superfluid Fermi gases through the BEC to BCS crossover. Phys. Rev. Lett. 96, 090403 (2006).

    Article  ADS  Google Scholar 

  24. Bulgac, A. & Yu, Y. Vortex state in a strongly coupled dilute atomic fermionic superfluid. Phys. Rev. Lett. 91, 190404 (2003).

    Article  ADS  Google Scholar 

  25. Feder, D. L. Vortex arrays in a rotating superfluid Fermi gas. Phys. Rev. Lett. 93, 200406 (2004).

    Article  ADS  Google Scholar 

  26. Tonini, G., Werner, F. & Castin, Y. Formation of a vortex lattice in a rotating BCS Fermi gas. Eur. Phys. J. D 39, 283–294 (2006).

    ADS  Google Scholar 

  27. Gao, M. & Yin, L. Vortex lattice state of a superfluid Fermi gas in the unitary region. Int. J. Mod. Phys. B 22, 3967–3976 (2008).

    Article  ADS  Google Scholar 

  28. Nozières, P. & Pines, D. The Theory of Quantum Liquids: Superfluid Bose Liquids Ch. 8 (Addison-Wesley, 1990).

    Google Scholar 

  29. Modugno, M., Pricoupenko, L. & Castin, Y. Bose–Einstein condensates with a bent vortex in rotating traps. Eur. Phys. J. D 22, 235–257 (2003).

    ADS  Google Scholar 

  30. Dalfovo, F., Giorgini, S., Pitaevskii, L. P. & Stringari, S. Theory of Bose–Einstein condensation in trapped gases. Rev. Mod. Phys. 71, 463–512 (1999).

    Article  ADS  Google Scholar 

  31. Liu, W. V. & Wilczek, F. Interior gap superfluidity. Phys. Rev. Lett. 90, 047002 (2003).

    Article  ADS  Google Scholar 

  32. Urban, M. & Schuck, P. Pair breaking in rotating Fermi gases. Phys. Rev. A 78, 011601(R) (2008).

    Article  ADS  Google Scholar 

  33. Wilson, K. E., Newman, Z. L., Lowney, J. D. & Anderson, B. P. In situ imaging of vortices in Bose–Einstein condensates. Phys. Rev. A 91, 023621 (2015).

    Article  ADS  Google Scholar 

  34. Simonucci, S., Pieri, P. & Strinati, G. C. Temperature dependence of a vortex in a superfluid Fermi gas. Phys. Rev. B 87, 214507 (2013).

    Article  ADS  Google Scholar 

  35. Casten, R. F. Nuclear Structure from a Simple Perspective (Oxford Univ. Press, 1990).

    Google Scholar 

  36. Bertsch, G. F. & Papenbrock, T. Yrast line for weakly interacting trapped bosons. Phys. Rev. Lett. 83, 5412–5414 (1999).

    Article  ADS  Google Scholar 

  37. Cremon, J. C., Kavoulakis, G. M., Mottelson, B. R. & Reimann, S. M. Vortices in Bose–Einstein condensates: Finite-size effects and the thermodynamic limit. Phys. Rev. A 87, 053615 (2013).

    Article  ADS  Google Scholar 

  38. Sidorenkov, L. A. et al. Second sound and the superfluid fraction in a Fermi gas with resonant interactions. Nature 498, 78–81 (2013).

    Article  ADS  Google Scholar 

  39. Urban, M. Two-fluid model for a rotating trapped Fermi gas in the BCS phase. Phys. Rev. A 71, 033611 (2005).

    Article  ADS  Google Scholar 

  40. Baym, G. & Pethick, C. J. Normal mass density of a superfluid Fermi gas at unitarity. Phys. Rev. A 88, 043631 (2013).

    Article  ADS  Google Scholar 

  41. Pethick, C. J. & Smith, H. Bose–Einstein Condensation in Dilute Gases Ch. 10 (Cambridge Univ. Press, 2008).

    Book  Google Scholar 

  42. Pitaevskii, L. & Stringari, S. Bose–Einstein Condensation Ch. 14 (Clarendon Press, 2003).

    MATH  Google Scholar 

Download references

Acknowledgements

G.C.S. is indebted to G. Bertsch, A. Bulgac and A. L. Fetter for discussions. Partial financial support from the University of Camerino under project FAR-CESN is acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

S.S. carried out the calculations, G.C.S. directed the work and wrote the manuscript, and P.P. contributed to the interpretation of the results and the writing of the manuscript.

Corresponding author

Correspondence to G. Calvanese Strinati.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 627 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simonucci, S., Pieri, P. & Strinati, G. Vortex arrays in neutral trapped Fermi gases through the BCS–BEC crossover. Nature Phys 11, 941–945 (2015). https://doi.org/10.1038/nphys3449

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys3449

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing