Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Linked attosecond phase interferometry for molecular frame measurements

Abstract

High-harmonic spectroscopy uses attosecond techniques to measure single-atom or molecule photorecombination cross-sections. Whereas the amplitude of the extreme-ultraviolet light is easily measurable, the phase is more challenging to access. However, the phase contains information necessary for tomographic imaging of the molecular orbital wavefunction with attosecond–ångström resolution. Present techniques cannot simultaneously measure the phase as a function of molecular angle and photon frequency, which is necessary for a full reconstruction of the wavefunction. We overcome this limitation with an all-optical method that does not require any ad hoc assumptions about the phase. We apply it to record the full phase map of aligned bromine molecules relative to reference xenon atoms. It allows us to resolve, both spectrally and angularly, the participation of multiple molecular orbitals, and infer a phase of ionization. This method opens a path to time-resolved molecular orbital tomography.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: In aligned molecules, the high-harmonic spectral phase ϕMol(q,θ) is a function of both harmonic order q and molecular alignment angle θ with respect to the driving laser field polarization axis (linear).
Figure 2: Spectral harmonic phase interferometry of aligned Br2 molecules.
Figure 3: Mixed-gases interferometry results.
Figure 4: Experimentally determined relative phase ΔϕMix(q,θ) between the molecule and reference atom.
Figure 5: Experimentally determined molecular frame amplitude and phase compared with model calculations.

Similar content being viewed by others

References

  1. Corkum, P. B. & Krausz, F. Attosecond science. Nature Phys. 3, 381–387 (2007).

    Article  ADS  Google Scholar 

  2. Le, A-T., Lucchese, R. R., Tonzani, S., Morishita, T. & Lin, C. D. Quantitative rescattering theory for high-order harmonic generation from molecules. Phys. Rev. A 80, 013401 (2009).

    Article  ADS  Google Scholar 

  3. Popmintchev, T., Chen, M-C., Arpin, P., Murnane, M. M. & Kapteyn, H. C. The attosecond nonlinear optics of bright coherent X-ray generation. Nature Photon. 4, 822–832 (2010).

    Article  ADS  Google Scholar 

  4. Frolov, M. V., Manakov, N. L., Sarantseva, T. S. & Starace, A. F. Analytic confirmation that the factorized formula for harmonic generation involves the exact photorecombination cross section. Phys. Rev. A 83, 043416 (2011).

    Article  ADS  Google Scholar 

  5. Shiner, A. D. et al. Probing collective multi-electron dynamics in xenon with high-harmonic spectroscopy. Nature Phys. 7, 464–467 (2011).

    Article  ADS  Google Scholar 

  6. Mairesse, Y. et al. Attosecond synchronization of high-harmonic soft X-rays. Science 302, 1540–1543 (2003).

    Article  ADS  Google Scholar 

  7. Wörner, H. J., Bertrand, J. B., Corkum, P. B. & Villeneuve, D. M. High-harmonic homodyne detection of the ultrafast dissociation of BR2 molecules. Phys. Rev. Lett. 105, 103002 (2010).

    Article  ADS  Google Scholar 

  8. Boutu, W. et al. Coherent control of attosecond emission from aligned molecules. Nature Phys. 4, 545–549 (2008).

    Article  Google Scholar 

  9. Smirnova, O. et al. High harmonic interferometry of multi-electron dynamics in molecules. Nature 460, 972–977 (2009).

    Article  ADS  Google Scholar 

  10. Mairesse, Y. et al. High harmonic spectroscopy of multichannel dynamics in strong-field ionization. Phy. Rev. Lett. 104, 213601 (2010).

    Article  ADS  Google Scholar 

  11. Wörner, H. J., Bertrand, J. B., Kartashov, D. V., Corkum, P. B. & Villeneuve, D. M. Following a chemical reaction using high-harmonic interferometry. Nature 466, 604–607 (2010).

    Article  ADS  Google Scholar 

  12. Itatani, J. et al. Tomographic imaging of molecular orbitals. Nature 432, 867–871 (2004).

    Article  ADS  Google Scholar 

  13. Haessler, S. et al. Attosecond imaging of molecular electronic wavepackets. Nature Phys. 6, 200–2006 (2010).

    Article  ADS  Google Scholar 

  14. Vozzi, C. et al. Generalized molecular orbital tomography. Nature Phys. 7, 822–826 (2011).

    Article  ADS  Google Scholar 

  15. Haessler, S., Caillat, J. & Salières, P. Self-probing of molecules with high harmonic generation. J. Phys. B 44, 203001 (2011).

    Article  ADS  Google Scholar 

  16. Paul, P. M. et al. Observation of a train of attosecond pulses from high harmonic generation. Science 292, 1689–1692 (2001).

    Article  ADS  Google Scholar 

  17. Mairesse, Y. & Quéré, F. Frequency-resolved optical gating for complete reconstruction of attosecond bursts. Phys. Rev. A 71, 011401 (2005).

    Article  ADS  Google Scholar 

  18. Zhou, X. et al. Molecular recollision interferometry in high harmonic generation. Phys. Rev. Lett. 100, 073902 (2008).

    Article  ADS  Google Scholar 

  19. McFarland, B. K., Farrell, J. P., Bucksbaum, P. H. & Gühr, M. High-order harmonic phase in molecular nitrogen. Phys. Rev. A 80, 033412 (2009).

    Article  ADS  Google Scholar 

  20. Wagner, N. et al. Extracting the phase of high-order harmonic emission from a molecule using transient alignment in mixed samples. Phys. Rev. A 76, 061403 (2007).

    Article  ADS  Google Scholar 

  21. Stapelfeldt, H. & Seideman, T. Aligning molecules with strong laser pulses. Rev. Mod. Phys. 75, 543–557 (2003).

    Article  ADS  Google Scholar 

  22. Lewenstein, M., Balcou, P., Ivanov, M. Y., L’Huillier, A. & Corkum, P. B. Theory of high-harmonic generation by low-frequency laser fields. Phys. Rev. A 49, 2117–2132 (1994).

    Article  ADS  Google Scholar 

  23. Kanai, T., Takahashi, E. J., Nabekawa, Y. & Midorikawa, K. Destructive interference during high harmonic generation in mixed gases. Phys. Rev. Lett. 98, 153904 (2007).

    Article  ADS  Google Scholar 

  24. McFarland, B. K., Farrell, J. P., Bucksbaum, P. H. & Gühr, M. High harmonic generation from multiple orbitals in N2 . Science 322, 1232–1235 (2008).

    Article  ADS  Google Scholar 

  25. Wörner, H. J., Bertrand, J. B., Hockett, P., Corkum, P. B. & Villeneuve, D. M. Controlling the interference of multiple molecular orbitals in high-harmonic generation. Phys. Rev. Lett. 104, 233904 (2010).

    Article  ADS  Google Scholar 

  26. Yakovlev, V. S., Ivanov, M. & Krausz, F. Enhanced phase-matching for generation of soft X-ray harmonics and attosecond pulses in atomic gases. Opt. Express 15, 15351–15364 (2007).

    Article  ADS  Google Scholar 

  27. Gianturco, F. A., Lucchese, R. R. & Sanna, N. Calculation of low-energy elastic cross sections for electron-CF4 scattering. J. Chem. Phys. 100, 6464–6471 (1994).

    Article  ADS  Google Scholar 

  28. Natalense, A. P. P. & Lucchese, R. R. Cross section and asymmetry parameter calculation for sulphur 1s photoionization of SF6 . J. Chem. Phys. 111, 5344–5348 (1999).

    Article  ADS  Google Scholar 

  29. Lein, M., Hay, N., Velotta, R., Marangos, J. & Knight, P. Role of the intramolecular phase in high-harmonic generation. Phys. Rev. Lett. 88, 183903 (2002).

    Article  ADS  Google Scholar 

  30. Lee, K. F., Villeneuve, D. M., Corkum, P. B., Stolow, A. & Underwood, J. G. Field-free three-dimensional alignment of polyatomic molecules. Phys. Rev. Lett. 97, 173001 (2006).

    Article  ADS  Google Scholar 

  31. De, S. et al. Field-free orientation of CO molecules by femtosecond two-colour laser fields. Phys. Rev. Lett. 103, 153002 (2009).

    Article  ADS  Google Scholar 

  32. Wörner, H. J. et al. Conical intersection dynamics in NO2 probed by homodyne high-harmonic spectroscopy. Science 334, 208–212 (2011).

    Article  ADS  Google Scholar 

  33. Whitaker, B. J. Shining light on diabolic points. Science 334, 187–188 (2011).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from NSERC, CIPI, AFOSR and the NRC-CEA agreement.

Author information

Authors and Affiliations

Authors

Contributions

J.B.B., H.J.W., P.S., D.M.V. and P.B.C. conceived the experiment and helped prepare the manuscript. J.B.B. and H.J.W. performed all experiments. J.B.B. and D.M.V. developed the LAPIN algorithm. J.B.B. did all data analysis and calculations, prepared all figures and led the writing of the manuscript.

Corresponding author

Correspondence to D. M. Villeneuve.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1424 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bertrand, J., Wörner, H., Salières, P. et al. Linked attosecond phase interferometry for molecular frame measurements. Nature Phys 9, 174–178 (2013). https://doi.org/10.1038/nphys2540

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys2540

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing