Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A compact laser-driven plasma accelerator for megaelectronvolt-energy neutral atoms

Abstract

Tremendous strides have been made in charged-particle acceleration using intense, ultrashort laser pulses. Accelerating neutral atoms is an important complementary technology because such particles are unaffected by electric and magnetic fields and can thus penetrate deeper into a target than ions. However, compact laser-based accelerators for neutral atoms are limited at best to millielectronvolt energies. Here, we report the generation of megaelectronvolt-energy argon atoms from an optical-field-ionized dense nanocluster ensemble. Measurements reveal that nearly every laser-accelerated ion is converted to an energetic neutral atom as a result of highly efficient electron transfer from Rydberg excited clusters, within a sheath around the laser focus. This process, although optimal in nanoclusters, is generic and adaptable to most laser-produced plasmas. Such compact laser-driven energetic neutral atom sources could have applications in fast atom lithography for surface science and tokamak diagnostics in plasma technology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The principle and measurement schematic.
Figure 2: Charge-resolved measurements: observations.
Figure 3: Neutral atom source characteristics.
Figure 4: Evidence for the excitation sheath.

Similar content being viewed by others

References

  1. Lundh, J. et al. Few femtosecond, few kiloampere electron bunch produced by a laser-plasma accelerator. Nature Phys. 7, 219–222 (2011).

    Article  ADS  Google Scholar 

  2. Faure, J. et al. Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses. Nature 444, 737–739 (2006).

    Article  ADS  Google Scholar 

  3. Rechatin, C. et al. Observation of beam loading in a laser-plasma accelerator. Phys. Rev. Lett. 103, 194804 (2009).

    Article  ADS  Google Scholar 

  4. Gonsalves, A. J. et al. Tunable accelerator based on longitudinal density tailoring. Nature Phys. 7, 862–866 (2011).

    Article  ADS  Google Scholar 

  5. Fuchs, J. et al. Laser-driven proton scaling laws and new paths towards energy increase. Nature Phys. 2, 48–54 (2006).

    Article  ADS  Google Scholar 

  6. Robson, L. et al. Scaling of proton acceleration driven by petawatt-laserplasma interactions. Nature Phys. 3, 58–62 (2007).

    Article  ADS  Google Scholar 

  7. Malka, V. et al. Principles and applications of compact laserplasma accelerators. Nature Phys. 4, 447–453 (2008).

    Article  ADS  Google Scholar 

  8. Mangles, S. P. D. et al. Monoenergetic beams of relativistic electrons from intense laser-plasma interactions. Nature 431, 535–538 (2004).

    Article  ADS  Google Scholar 

  9. Geddes, C. G. R. et al. High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding. Nature 431, 538–541 (2004).

    Article  ADS  Google Scholar 

  10. Faure, J. et al. A laser plasma accelerator producing monoenergetic electron beams. Nature 431, 541–544 (2004).

    Article  ADS  Google Scholar 

  11. Clark, E. L. et al. Measurements of energetic proton transport through magnetised plasma from intense laser interactions with solids. Phys. Rev. Lett. 84, 670–673 (2000).

    Article  ADS  Google Scholar 

  12. Snavely, R. A. et al. Intense high-energy proton beams from petawatt-laser irradiation of solids. Phys. Rev. Lett. 85, 2945–2948 (2000).

    Article  ADS  Google Scholar 

  13. Hegelich, B. M. et al. Laser acceleration of quasi-monoenergetic megaelectron volt ion beams. Nature 439, 441–444 (2006).

    Article  ADS  Google Scholar 

  14. Haberberger, D. et al. Collisionless shocks in laser-produced plasma generate monoenergetic high-energy proton beams. Nature Phys. 8, 95–99 (2012).

    Article  ADS  Google Scholar 

  15. Ditmire, T. et al. High-energy ions produced in explosions of superheated atomic clusters. Nature 386, 54–46 (1997).

    Article  ADS  Google Scholar 

  16. Kumarappan, V., Krishnamurthy, M. & Mathur, D. Asymmetric high-energy ion emission from argon clusters in intense laser fields. Phys. Rev. Lett. 87, 085005 (2001).

    Article  ADS  Google Scholar 

  17. Eichmann, U., Nubbemeyer, T., Rottke, H. & Sandner, W. Acceleration of neutral atoms in a strong short-pulse laser fields. Nature 461, 1261–1264 (2009).

    Article  ADS  Google Scholar 

  18. Maher-McWilliams, C., Douglas, P. & Barker, P. F. Laser-driven acceleration of neutral particles. Nature Photon. 6, 386–390 (2012).

    Article  ADS  Google Scholar 

  19. McDaniel, E. W., Mitchell, J. B. A. & Eugene Rudd, M. Atomic Collisions: Heavy Particle Projectiles (Wiley, 1993).

    Google Scholar 

  20. Stebbings, R. F. High Rydberg atoms: Newcomers to the atomic physics scene. Science 193, 537–542 (1976).

    Article  ADS  Google Scholar 

  21. Harth, K., Ruf, M. W. & Hotop, H. Electron transfer from laser excited Rydberg atoms to molecules: Absolute rate constants at low and intermediate principal quantum numbers. Z. Phys. D 14, 149–165 (1989).

    Article  ADS  Google Scholar 

  22. Mcpherson, A., Thompson, B. D., Borisov, A. B., Boyer, K. & Rhodes, C. K. Multiphoton-induced X-ray emission at 4–5 keV from Xe atoms with multiple core vacancies. Nature 370, 631–634 (1994).

    Article  ADS  Google Scholar 

  23. Jha, J. & Krishnamurthy, M. Hotten electron generation in doped clusters. J. Phys. B 41, 041002 (2008).

    Article  ADS  Google Scholar 

  24. Raju, G. Electron-atom collision cross sections in argon: An analysis and comments. IEEE Trans. Dielectr. Electr. Insul. 11, 649–673 (2004).

    Article  Google Scholar 

  25. Rajeev, R., Rishad, K. P. M., Madhu Trivikram, T., Narayanan, V. & Krishnamurthy, M. A Thomson parabola ion imaging spectrometer to probe relativistic intensity dynamics of nano clusters. Rev. Sci. Instrum. 82, 083303 (2011).

    Article  ADS  Google Scholar 

  26. Rajeev, R. et al. Decrypting the charge resolved kinetic energy spectrum in the Coulomb explosion of argon clusters. Phys. Rev. A 85, 023201 (2012).

    Article  ADS  Google Scholar 

  27. Krainov, V. P. & Sofronov, A. V. Recombination processes in atomic clusters irradiated by super intense femtosecond laser pulses. J. Exp. Theor. Phys. 103, 35–38 (2006).

    Article  ADS  Google Scholar 

  28. Vancura, J., Perotti, J. J., Flidr, J. & Kostroun, V. O. Absolute total, one-, two-, and three-electron-transfer cross sections for Arq+ (8≤q≤16) on Ar at 2.3q keV. Phys. Rev. A 49, 2515–2523 (1994).

    Article  ADS  Google Scholar 

  29. http://www.adas.co.uk/.

  30. Ditmire, T., Donnelly, T., Rubenchik, A. M., Falcone, R. W. & Perry, M. D. Interaction of intense laser pulses with atomic clusters. Phys. Rev. A 53, 3379–3402 (1996).

    Article  ADS  Google Scholar 

  31. Wörmer, J., Joppien, M., Zimmerer, G. & Möller, T. Formation and confinement of Wannier excitons in free argon clusters. Phys. Rev. Lett. 67, 2053–2056 (1991).

    Article  ADS  Google Scholar 

  32. Wörmer, J., Guzielski, V., Stapelfeldt, J., Zimmerer, G. & Möller, T. Optical properties of argon clusters in the VUV. Phys. Scr. 41, 490–494 (1990).

    Article  ADS  Google Scholar 

  33. Bondarenko, E. A., Verkhovtseva, E. T., Doronin, Yu. S. & Ratner, A. M. New emission continua of rare-gas clusters in the VUV region. Chem. Phys. Lett. 182, 637–642 (1991).

    Article  ADS  Google Scholar 

  34. Bondarenko, E. A., Verkhovtseva, E. T. & Doronin, Yu. S. Cluster size effects in VUV radiation spectra of argon and krypton supersonic jet. Chem. Phys. Lett. 140, 181–188 (1987.).

    Article  ADS  Google Scholar 

  35. Van der Burgt, P. J. M. & McConkey, J. W. Detection of neutral metastable fragments from electron impact on argon clusters. J. Chem. Phys. 102, 8414–8423 (1995).

    Article  ADS  Google Scholar 

  36. Sisourat, N. et al. Ultralong-range energy transfer by interatomic Coulombic decay in an extreme quantum system. Nature Phys. 6, 508–511 (2010).

    Article  ADS  Google Scholar 

  37. Ditmire, T., Gumbrell, E. T., Smith, R. A., Djaoui, A. & Hutchinson, M. H. R. Time-resolved study of non-local heat transport in high temperature plasmas. Phys. Rev. Lett. 80, 720–723 (1998).

    Article  ADS  Google Scholar 

  38. Rahman, F. & Hird, B. Electron detachment atomic cross sections from negative ions. At. Data Nucl. Data Tables 35, 123–183 (1986).

    Article  ADS  Google Scholar 

  39. Ter-Avetisyan, S. et al. Megaelectron volt negative ion generation from ultra-intense laser interaction with a water spray. Appl. Phys. Lett. 99, 051501 (2011).

    Article  ADS  Google Scholar 

  40. Nakamura, T. et al. Coulomb implosion mechanism of negative ion acceleration in laser plasmas. Phys. Lett. A 373, 2584–2587 (2009).

    Article  ADS  Google Scholar 

  41. Olson, R. E. Ion-Rydberg atom collision cross sections. J. Phys. B 13, 483–492 (1980).

    Article  ADS  Google Scholar 

  42. Wolfe, J. C. & Craver, B. P. Neutral particle lithography: a simple solution to charge-related artefacts in ion beam proximity printing. J. Phys. D 41, 024007 (2008).

    Article  Google Scholar 

  43. Saravia, E., Castracane, J. & Woo, J. T. Neutral beam probe for edge plasma analysis in tokomaks. Rev. Sci. Instrum. 61, 3528–3531 (1990).

    Article  ADS  Google Scholar 

  44. Nishiuchi, M. et al. Measured and simulated transport of 1.9 MeV volt laser-accelerated proton bunches through an integrated test beam line at 1 Hz. Phys. Rev. Spec. Top. Accel. Beams 13, 071304 (2010).

    Article  ADS  Google Scholar 

  45. Krushelnick, K. et al. Ultra high intensity laser-produced plasmas as a compact heavy ion injection source. IEEE Trans. Plasma Sci. 28, 1110–1115 (2000).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

M.K. acknowledges the Swarnajayanti Fellowship from the Department of Science and Technology, Govt. of India. The authors thank V. Malka, T. Brabec, C. Joshi, A. Ziegler, S. Bhattacharya and G. Ravindrakumar for comments and discussions. S. Saran and UPHILL group members are thanked for suggestions on improving the paper.

Author information

Authors and Affiliations

Authors

Contributions

R.R., V.N. and M.K. conceived the idea of a neutral atom accelerator and executed the experiments along with T.M.T. & K.P.M.R. Data analysis was performed by R.R, K.P.M.R. and T.M.T. The computations pertaining to the charge reduction model and electron spectral distributions were performed by R.R. and M.K. in consultation with E.K. The manuscript was written by R.R. and M.K.

Corresponding author

Correspondence to M. Krishnamurthy.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1059 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rajeev, R., Madhu Trivikram, T., Rishad, K. et al. A compact laser-driven plasma accelerator for megaelectronvolt-energy neutral atoms. Nature Phys 9, 185–190 (2013). https://doi.org/10.1038/nphys2526

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys2526

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing