Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides

Abstract

Slow light has attracted significant interest recently as a potential solution for optical delay lines and time-domain optical signal processing1,2. Perhaps even more significant is the possibility of dramatically enhancing nonlinear optical effects3,4 due to the spatial compression of optical energy5,6,7. Two-dimensional silicon photonic-crystal waveguides have proven to be a powerful platform for realizing slow light, being compatible with on-chip integration and offering wide-bandwidth and dispersion-free propagation2. Here, we report the slow-light enhancement of a nonlinear optical process in a two-dimensional silicon photonic-crystal waveguide. We observe visible third-harmonic-generation at a wavelength of 520 nm with only a few watts of peak power, and demonstrate strong third-harmonic-generation enhancement due to the reduced group velocity of the near-infrared pump signal. This demonstrates yet another unexpected nonlinear function realized in a CMOS-compatible silicon waveguide.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Green light emission through third-harmonic generation (THG) in a slow-light photonic-crystal waveguide.
Figure 2: Photonic-crystal waveguide dispersion.
Figure 3: Observation of green light.
Figure 4: Power dependence of the green light emission.
Figure 5: Slow-light enhancement of green light emission.

Similar content being viewed by others

References

  1. Krauss, T. F. Why do we need slow light? Nature Photon. 2, 448–449 (2008).

    Article  ADS  Google Scholar 

  2. Baba, T. Slow light in photonic crystals. Nature Photon. 2, 465–473 (2008).

    Article  ADS  Google Scholar 

  3. Soljacic, M. et al. Photonic-crystal slow-light enhancement of nonlinear phase sensitivity. J. Opt. Soc. Am. B 19, 2052–2059 (2002).

    Article  ADS  Google Scholar 

  4. Bhat, N. A. R. & Sipe, J. E. Optical pulse propagation in nonlinear photonic crystals. Phys. Rev. E 64, 0566041 (2001).

    Article  Google Scholar 

  5. Settle, M. D. et al. Flatband slow light in photonic crystals featuring spatial pulse compression and terahertz bandwidth. Opt. Express 15, 219–226 (2007).

    Article  ADS  Google Scholar 

  6. Krauss, T. F. Slow light in photonic crystal waveguides. J. Phys. D 40, 2666–2670 (2007).

    Article  ADS  Google Scholar 

  7. McMillan, J. E., Yang, X. D., Panoiu, N. C., Osgood, R. M. & Wong, C. W. Enhanced stimulated Raman scattering in slow-light photonic crystal waveguides. Opt. Lett. 31, 1235–1237 (2006).

    Article  ADS  Google Scholar 

  8. Jalali, B. Teaching silicon new tricks. Nature Photon. 1, 193–195 (2007).

    Article  ADS  Google Scholar 

  9. Vlasov, Y. A., O'Boyle, M., Hamann, H. F. & McNab, S. J. Active control of slow light on a chip with photonic crystal waveguides. Nature 438, 65–69 (2005).

    Article  ADS  Google Scholar 

  10. Bogaerts, W. et al. Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology. J. Lightwave Technol. 23, 401–412 (2005).

    Article  ADS  Google Scholar 

  11. Lin, Q., Painter, O. J. & Agrawal, G. P. Nonlinear optical phenomena in silicon waveguides: Modeling and applications. Opt. Express 15, 16604–16644 (2007).

    Article  ADS  Google Scholar 

  12. Jacobsen, R. S. et al. Strained silicon as a new electro-optic material. Nature 441, 199–202 (2006).

    Article  ADS  Google Scholar 

  13. Wynne, J. J. Optical third-order mixing in GaAs Ge Si and InAs. Phys. Rev. 178, 1295–1303 (1969).

    Article  ADS  Google Scholar 

  14. Wang, C. C. et al. Optical third harmonic generation in reflection from crystalline and amorphous samples of silicon. Phys. Rev. Lett. 57, 1647–1650 (1986).

    Article  ADS  Google Scholar 

  15. Moss, D. J., Van Driel, H. M. & Sipe, J. E. Third harmonic generation as a structural diagnosis of ion-implanted amorphous and crystalline silicon. Appl. Phys. Lett. 48, 1150–1152 (1986).

    Article  ADS  Google Scholar 

  16. Moss, D. J., Van Driel, H. M. & Sipe, J. E. Dispersion in the anisotropy for optical third harmonic generation in Si and Ge. Opt. Lett. 14, 57–59 (1989).

    Article  ADS  Google Scholar 

  17. Boyd, R. Nonlinear Optics, Ch. 2 (Academic Press, 1992).

    Google Scholar 

  18. Carmon, T. & Vahala, K. J. Visible continuous emission from a silica microphotonic device by third-harmonic generation. Nature Phys. 3, 430–435 (2007).

    Article  ADS  Google Scholar 

  19. Martemyanov, M. G. et al. Third-harmonic generation in silicon photonic crystals and microcavities. Phys. Rev. B 70, 073311 (2004).

    Article  ADS  Google Scholar 

  20. Dolgova, T. V., Maidykovski, A. I., Martemyanov, M. G., Fedyanin, A. A. & Aktsipetrov, O. A. Giant third-harmonic in porous silicon photonic crystals and microcavities. JETP Lett. 75, 15–19 (2002).

    Article  ADS  Google Scholar 

  21. Coquillat, D. et al. Enhanced second- and third-harmonic generation and induced photoluminescence in a two-dimensional GaN photonic crystal. Appl. Phys. Lett. 87, 101106 (2005).

    Article  ADS  Google Scholar 

  22. Markowicz, P. P. et al. Dramatic enhancement of third-harmonic generation in three-dimensional photonic crystals. Phys. Rev. Lett. 92, 083903 (2004).

    Article  ADS  Google Scholar 

  23. Frandsen, L. H., Lavrinenko, A. V., Fage-Pedersen, J. & Borel, P. I. Photonic crystal waveguides with semi-slow light and tailored dispersion properties. Opt. Express 14, 9444–9450 (2006).

    Article  ADS  Google Scholar 

  24. Li, J., White, T. P., O'Faolain, L., Gomez-Iglesias, A. & Krauss, T. F. Systematic design of flat band slow light in photonic crystal waveguides. Opt. Express 16, 6227–6232 (2008).

    Article  ADS  Google Scholar 

  25. Kubo, S., Mori, D. & Baba, T. Low-group-velocity and low-dispersion slow light in photonic crystal waveguides. Opt. Lett. 32, 2981–2983 (2007).

    Article  ADS  Google Scholar 

  26. Notomi, M. et al. Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs. Phys. Rev. Lett. 87, 2539021 (2001).

    Article  Google Scholar 

  27. Engelen, R. J. P. et al. The effect of higher-order dispersion on slow light propagation in photonic crystal waveguides. Opt. Express 14, 1658–1672 (2006).

    Article  ADS  Google Scholar 

  28. Gomez-Iglesias, A., O'Brien, D., O'Faolain, L., Miller, A. & Krauss, T. F. Direct measurement of the group index of photonic crystal waveguides via Fourier transform spectral interferometry. Appl. Phys. Lett. 90, 261107 (2007).

    Article  ADS  Google Scholar 

  29. Rusu, M. et al. Efficient generation of green and UV light in a single PP–KTP waveguide pumped by a compact all-fiber system. Appl. Phys. Lett. 88, 121105 (2006).

    Article  ADS  Google Scholar 

  30. Green, M. A. & Keevers, M. J. Optical properties of intrinsic silicon at 300 K. Progr. Photovoltaics Res. Appl. 3, 189–192 (1995).

    Article  Google Scholar 

  31. Hugonin, J. P., Lalanne, P., White, T. P. & Krauss, T. F. Coupling into slow-mode photonic crystal waveguides. Opt. Lett. 32, 2638–2640 (2007).

    Article  ADS  Google Scholar 

  32. O'Faolain, L. et al. Low-loss propagation in photonic crystal waveguides. Electron. Lett. 42, 1454–1455 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the EU-FP6 Marie Curie Fellowship project SLIPPRY, the EU-FP6 Network of Excellence ePIXnet and the EU-FP6 SPLASH project. Fabrication was carried out in the framework of the ePIXnet Nanostructuring Platform for Photonic Integration. We would also like to acknowledge the Australian Research Council (ARC) through its Federation Fellow, Centre of Excellence and Discovery Grant programs as well as the International Science Linkages program of the Australian Department of Education, Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Monat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Corcoran, B., Monat, C., Grillet, C. et al. Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides. Nature Photon 3, 206–210 (2009). https://doi.org/10.1038/nphoton.2009.28

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2009.28

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing