Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Detection of post-translational modifications in single peptides using electron tunnelling currents

Abstract

Post-translational modifications alter the properties of proteins through the cleavage of peptide bonds or the addition of a modifying group to one or more amino acids1,2,3,4,5,6,7. These modifications allow proteins to perform their primary biological functions8,9,10,11, but single-protein studies of post-translational modifications have been hindered by a lack of suitable analysis methods12,13,14,15,16. Here, we show that single amino acids can be identified using electron tunnelling currents measured as the individual molecules pass through a nanoscale gap between electrodes. We identify 12 different amino acids and the post-translational modification phosphotyrosine, which is involved in the process that switches enzymes on and off17,18,19,20. Furthermore, we show that the conductance measurements can be used to partially sequence peptides of an epidermal growth factor receptor substrate, and can discriminate a peptide from its phosphorylated variant.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Single-molecule proteomic analysis of post-translational modification, using tunnelling currents conducted via single amino-acid molecules.
Figure 2: Single-molecule identification of amino-acid and phosphotyrosine molecules.
Figure 3: Discrimination of individual tryosine (Y) and phosphorylated tyrosine (pY).
Figure 4: Single-molecule peptide identification and discrimination of post-translational modification.

Similar content being viewed by others

References

  1. Pandey, A. & Mann, M. Proteomics to study genes and genomes. Nature 405, 837–846 (2000).

    Article  CAS  Google Scholar 

  2. Mann, M. & Jensen, O. N. Proteomic analysis of post-translational modifications. Nature Biotechnol. 21, 255–261 (2003).

    Article  CAS  Google Scholar 

  3. Steen, H. & Mann, M. The abc's (and xyz's) of peptide sequencing. Nature Rev. Mol. Cell Biol. 5, 699–711 (2004).

    Article  CAS  Google Scholar 

  4. Tran, J. C. et al. Mapping intact protein isoforms in discovery mode using top-down proteomics. Nature 480, 254–258 (2011).

    Article  CAS  Google Scholar 

  5. Cravatt, B. F., Simon, G. M. & Yates, J. R. The biological impact of mass-spectrometry-based proteomics. Nature 450, 991–1000 (2007).

    Article  CAS  Google Scholar 

  6. Domon, B. & Aebersold, R. Review—mass spectrometry and protein analysis. Science 312, 212–217 (2006).

    Article  CAS  Google Scholar 

  7. Seet, B. T., Dikic, I., Zhou, M. M. & Pawson, T. Reading protein modifications with interaction domains. Nature Rev. Mol. Cell Biol. 7, 473–483 (2006).

    Article  CAS  Google Scholar 

  8. Choudhary, C. et al. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325, 834–840 (2009).

    Article  CAS  Google Scholar 

  9. Vucic, D., Dixit, V. M. & Wertz, I. E. Ubiquitylation in apoptosis: a post-translational modification at the edge of life and death. Nature Rev. Mol. Cell Biol. 12, 439–452 (2011).

    Article  CAS  Google Scholar 

  10. Kouzarides, T. Chromatin modifications and their function. Cell 128, 693–705 (2007).

    Article  CAS  Google Scholar 

  11. Tsur, D., Tanner, S., Zandi, E., Bafna, V. & Pevzner, P. A. Identification of post-translational modifications by blind search of mass spectra. Nature Biotechnol. 23, 1562–1567 (2005).

    Article  CAS  Google Scholar 

  12. Mertins, P. et al. Integrated proteomic analysis of post-translational modifications by serial enrichment. Nature Methods 10, 634–637 (2013).

    Article  CAS  Google Scholar 

  13. Doerr, A. Mass spectrometry-based targeted proteomics. Nature Methods 10, 23–23 (2013).

    Article  Google Scholar 

  14. Aebersold, R. & Mann, M. Mass spectrometry-based proteomics. Nature 422, 198–207 (2003).

    Article  CAS  Google Scholar 

  15. Zhu, H. et al. Analysis of yeast protein kinases using protein chips. Nature Genet. 26, 283–289 (2000).

    Article  CAS  Google Scholar 

  16. Witze, E. S., Old, W. M., Resing, K. A. & Ahn, N. G. Mapping protein post-translational modifications with mass spectrometry. Nature Methods 4, 798–806 (2007).

    Article  CAS  Google Scholar 

  17. Olsen, J. V. et al. Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci. Signal 3, ra3 (2010).

    Article  Google Scholar 

  18. Manning, G., Whyte, D. B., Martinez, R., Hunter, T. & Sudarsanam, S. The protein kinase complement of the human genome. Science 298, 1912–1934 (2002).

    Article  CAS  Google Scholar 

  19. Oda, Y., Nagasu, T. & Chait, B. T. Enrichment analysis of phosphorylated proteins as a tool for probing the phosphoproteome. Nature Biotechnol. 19, 379–382 (2001).

    Article  CAS  Google Scholar 

  20. Tran, J. C. et al. Mapping intact protein isoforms in discovery mode using top-down proteomics. Nature 480, 254–258 (2011).

    Article  CAS  Google Scholar 

  21. Tsutsui, M., Shoji, K., Taniguchi, M. & Kawai, T. Formation and self-breaking mechanism of stable atom-sized junctions. Nano Lett. 8, 345–349 (2008).

    Article  CAS  Google Scholar 

  22. Agrait, N., Yeyati, A. L. & van Ruitenbeek, J. M. Quantum properties of atomic-sized conductors. Phys. Rep. 377, 81–279 (2003).

    Article  CAS  Google Scholar 

  23. Tsutsui, M., Taniguchi, M., Yokota, K. & Kawai, T. Identifying single nucleotides by tunnelling current. Nature Nanotech. 5, 286–290 (2010).

    Article  CAS  Google Scholar 

  24. Ohshiro, T. et al. Single-molecule electrical random resequencing of DNA and RNA. Sci. Rep. 2, 501 (2012).

    Article  Google Scholar 

  25. Taniguchi, M., Tsutsui, M., Shoji, K., Fujiwara, H. & Kawai, T. Single-molecule junctions with strong molecule–electrode coupling. J. Am. Chem. Soc. 131, 14146–14147 (2009).

    Article  CAS  Google Scholar 

  26. Fernandez-Torrente, I. et al. Long-range repulsive interaction between molecules on a metal surface induced by charge transfer. Phys. Rev. Lett. 99, 176103 (2007).

    Article  CAS  Google Scholar 

  27. Chen, F., Li, X., Hihath, J., Huang, Z. & Tao, N. Effect of anchoring groups on single-molecule conductance: comparative study of thiol-, amine-, and carboxylic-acid-terminated molecules. J. Am. Chem. Soc. 128, 15874–15881 (2006).

    Article  CAS  Google Scholar 

  28. Zhao, Y. et al. Single-molecule spectroscopy of amino acids and peptides by recognition tunnelling. Nature Nanotech. 9, 466–473 (2014).

    Article  CAS  Google Scholar 

  29. Noble, M. E. M., Endicott, J. A. & Johnson, L. N. Protein kinase inhibitors: insights into drug design from structure. Science 303, 1800–1805 (2004).

    Article  CAS  Google Scholar 

  30. Sharma, S. V., Bell, D. W., Settleman, J. & Haber, D. A. Epidermal growth factor receptor mutations in lung cancer. Nature Rev. Cancer 7, 169–181 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was partially supported by the Japan Society for the Promotion of Science (JSPS) through its Funding Program for World-Leading Innovative R&D on Science and Technology, and KAKENHI grant no. 26220603.

Author information

Authors and Affiliations

Authors

Contributions

M.Ta. and T.K. planned and designed the experiments. T.O., M.Ts., K.Y. and M.F. participated in fabrications of nano-MCBJs and single-molecule detection measurements. T.O., M.Ts., K.Y. and M.Ta. performed data analyses. T.O., M.Ta. and T.K. co-wrote the paper.

Corresponding authors

Correspondence to Masateru Taniguchi or Tomoji Kawai.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Information (PDF 1500 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ohshiro, T., Tsutsui, M., Yokota, K. et al. Detection of post-translational modifications in single peptides using electron tunnelling currents. Nature Nanotech 9, 835–840 (2014). https://doi.org/10.1038/nnano.2014.193

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2014.193

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing