Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Synthetic RNA–protein complex shaped like an equilateral triangle

Subjects

Abstract

Synthetic nanostructures consisting of biomacromolecules such as nucleic acids have been constructed using bottom-up approaches1,2. In particular, Watson–Crick base pairing has been used to construct a variety of two- and three-dimensional DNA nanostructures3,4,5,6,7,8,9,10. Here, we show that RNA and the ribosomal protein L7Ae can form a nanostructure shaped like an equilateral triangle that consists of three proteins bound to an RNA scaffold. The construction of the complex relies on the proteins binding to kink-turn (K-turn) motifs in the RNA11,12,13, which allows the RNA to bend by 60° at three positions to form a triangle. Functional RNA–protein complexes constructed with this approach could have applications in nanomedicine14,15 and synthetic biology14,16,17,18.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Molecular design of the triangular RNP (Tri-RNP).
Figure 2: Interaction between the RNA and the protein.
Figure 3: AFM imaging of Tri-RNP-1.
Figure 4: Comparison of the dimensions of Tri-RNP-1 and Tri-RNP-2.

Similar content being viewed by others

References

  1. Seeman, N. C. Nanomaterials based on DNA. Annu. Rev. Biochem. 79, 65–87 (2010).

    Article  CAS  Google Scholar 

  2. Lin, C., Liu, Y. & Yan, H. Designer DNA nanoarchitectures. Biochemistry 48, 1663–1674 (2009).

    Article  CAS  Google Scholar 

  3. Goodman, R. P. et al. Rapid chiral assembly of rigid DNA building blocks for molecular nanofabrication. Science 310, 1661–1665 (2005).

    Article  CAS  Google Scholar 

  4. Rothemund, P. W. Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006).

    Article  CAS  Google Scholar 

  5. Andersen, E. S. et al. Self-assembly of a nanoscale DNA box with a controllable lid. Nature 459, 73–76 (2009).

    Article  CAS  Google Scholar 

  6. Douglas, S. M. et al. Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 459, 414–418 (2009).

    Article  CAS  Google Scholar 

  7. Rinker, S., Ke, Y., Liu, Y., Chhabra, R. & Yan, H. Self-assembled DNA nanostructures for distance-dependent multivalent ligand–protein binding. Nature Nanotech. 3, 418–422 (2008).

    Article  CAS  Google Scholar 

  8. Ke, Y., Lindsay, S., Chang, Y., Liu, Y. & Yan, H. Self-assembled water-soluble nucleic acid probe tiles for label-free RNA hybridization assays. Science 319, 180–183 (2008).

    Article  CAS  Google Scholar 

  9. Voigt, N. V. et al. Single-molecule chemical reactions on DNA origami. Nature Nanotech. 5, 200–203 (2010).

    Article  CAS  Google Scholar 

  10. Endo, M., Katsuda, Y., Hidaka, K. & Sugiyama, H. Regulation of DNA methylation using different tensions of double strands constructed in a defined DNA nanostructure. J. Am. Chem. Soc. 132, 1592–1597 (2010).

    Article  CAS  Google Scholar 

  11. Moore, T., Zhang, Y., Fenley, M. O. & Li, H. Molecular basis of box C/D RNA–protein interactions; cocrystal structure of archaeal L7Ae and a box C/D RNA. Structure 12, 807–818 (2004).

    Article  CAS  Google Scholar 

  12. Rozhdestvensky, T. S. et al. Binding of L7Ae protein to the K-turn of archaeal snoRNAs: a shared RNA binding motif for C/D and H/ACA box snoRNAs in Archaea. Nucleic Acids Res. 31, 869–877 (2003).

    Article  CAS  Google Scholar 

  13. Turner, B., Melcher, S. E., Wilson, T. J., Norman, D. G. & Lilley, D. M. Induced fit of RNA on binding the L7Ae protein to the kink-turn motif. RNA 11, 1192–1200 (2005).

    Article  CAS  Google Scholar 

  14. Guo, P. RNA nanotechnology: engineering, assembly and applications in detection, gene delivery and therapy. J. Nanosci. Nanotechnol. 5, 1964–1982 (2005).

    Article  CAS  Google Scholar 

  15. Guo, P. The emerging field of RNA nanotechnology. Nature Nanotech. 5, 833–842 (2010).

    Article  CAS  Google Scholar 

  16. Saito, H. & Inoue, T. Synthetic biology with RNA motifs. Int. J. Biochem. Cell Biol. 41, 398–404 (2009).

    Article  CAS  Google Scholar 

  17. Saito, H. & Inoue, T. RNA and RNP as new molecular parts in synthetic biology. J. Biotechnol. 132, 1–7 (2007).

    Article  CAS  Google Scholar 

  18. Win, M. N., Liang, J. C. & Smolke, C. D. Frameworks for programming biological function through RNA parts and devices. Chem. Biol. 16, 298–310 (2009).

    Article  CAS  Google Scholar 

  19. Jaeger, L. & Chworos, A. The architectonics of programmable RNA and DNA nanostructures. Curr. Opin. Struct. Biol. 16, 531–543 (2006).

    Article  CAS  Google Scholar 

  20. Leontis, N. B., Lescoute, A. & Westhof, E. The building blocks and motifs of RNA architecture. Curr. Opin. Struct. Biol. 16, 279–287 (2006).

    Article  CAS  Google Scholar 

  21. Matsumura, S., Ikawa, Y. & Inoue, T. Biochemical characterization of the kink-turn RNA motif. Nucleic Acids Res. 31, 5544–5551 (2003).

    Article  CAS  Google Scholar 

  22. Lescoute, A., Leontis, N. B., Massire, C. & Westhof, E. Recurrent structural RNA motifs, isostericity matrices and sequence alignments. Nucleic Acids Res. 33, 2395–2409 (2005).

    Article  CAS  Google Scholar 

  23. Ikawa, Y., Tsuda, K., Matsumura, S. & Inoue, T. De novo synthesis and development of an RNA enzyme. Proc. Natl Acad. Sci. USA 101, 13750–13755 (2004).

    Article  CAS  Google Scholar 

  24. Penchovsky, R. & Breaker, R. R. Computational design and experimental validation of oligonucleotide-sensing allosteric ribozymes. Nature Biotechnol. 23, 1424–1433 (2005).

    Article  CAS  Google Scholar 

  25. Voytek, S. B. & Joyce, G. F. Niche partitioning in the coevolution of 2 distinct RNA enzymes. Proc. Natl Acad. Sci. USA 106, 7780–7785 (2009).

    Article  CAS  Google Scholar 

  26. Horiya, S. et al. RNA LEGO: magnesium-dependent formation of specific RNA assemblies through kissing interactions. Chem. Biol. 10, 645–654 (2003).

    Article  CAS  Google Scholar 

  27. Chworos, A. et al. Building programmable jigsaw puzzles with RNA. Science 306, 2068–2072 (2004).

    Article  CAS  Google Scholar 

  28. Ko, S. H., Chen, Y., Shu, D., Guo, P. & Mao, C. Reversible switching of pRNA activity on the DNA packaging motor of bacteriophage phi29. J. Am. Chem. Soc. 130, 17684–17687 (2008).

    Article  CAS  Google Scholar 

  29. Severcan, I. et al. A polyhedron made of tRNAs. Nature Chem. 2, 772–779 (2010).

    Article  CAS  Google Scholar 

  30. Afonin, K. A. et al. In vitro assembly of cubic RNA-based scaffolds designed in silico. Nature Nanotech. 5, 676–682 (2010).

    Article  CAS  Google Scholar 

  31. Saito, H. et al. Synthetic translational regulation by an L7Ae-kink-turn RNP switch. Nature Chem. Biol. 6, 71–78 (2010).

    Article  CAS  Google Scholar 

  32. Goody, T. A., Melcher, S. E., Norman, D. G. & Lilley, D. M. The kink-turn motif in RNA is dimorphic, and metal ion-dependent. RNA 10, 254–264 (2004).

    Article  CAS  Google Scholar 

  33. Service, R. F. Materials and biology. Nanotechnology takes aim at cancer. Science 310, 1132–1134 (2005).

    Article  Google Scholar 

  34. Holler, N. et al. Two adjacent trimeric Fas ligands are required for Fas signaling and formation of a death-inducing signaling complex. Mol. Cell. Biol. 23, 1428–1440 (2003).

    Article  CAS  Google Scholar 

  35. Ranzinger, J. et al. Nanoscale arrangement of apoptotic ligands reveals a demand for a minimal lateral distance for efficient death receptor activation. Nano Lett. 9, 4240–4245 (2009).

    Article  CAS  Google Scholar 

  36. Ban, N., Nissen, P., Hansen, J., Moore, P. B. & Steitz, T. A. The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution. Science 289, 905–920 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank R. Furushima, M. Sekiya and Y. Kodama (Japan Science and Technology Agency) for analysis and purification of Tri-RNPs, Y. Fujita (Kyoto University) and M. Takinoue (The University of Tokyo) for discussions, and A. Huttenhofer (Innsbruck Medical University) and T.S. Rozhdestvensky (University of Muenster) for providing the L7Ae plasmid. This work was supported by the JST International Cooperative Research Project. Part of the work was supported by the New Energy and Industrial Technology Development Organization (09A02021a).

Author information

Authors and Affiliations

Authors

Contributions

H.O., T.K., T.I. and H.S. designed the project. H.O., T.I., S.H.Y. and H.S. performed AFM. H.O., R.K. and K.E. performed RNP biochemical assays. H.O., S.H.Y., K.T., T.I. and H.S. evaluated the experimental results. H.O., T.I. and H.S. wrote the manuscript.

Corresponding authors

Correspondence to Tan Inoue or Hirohide Saito.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 3509 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohno, H., Kobayashi, T., Kabata, R. et al. Synthetic RNA–protein complex shaped like an equilateral triangle. Nature Nanotech 6, 116–120 (2011). https://doi.org/10.1038/nnano.2010.268

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2010.268

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing