Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Electrically driven thermal light emission from individual single-walled carbon nanotubes

Abstract

Light emission from nanostructures exhibits rich quantum effects and has broad applications. Single-walled carbon nanotubes (SWNTs) are one-dimensional metals or semiconductors in which large numbers of electronic states in narrow energy ranges, known as van Hove singularities, can lead to strong spectral transitions1,2. Photoluminescence and electroluminescence involving interband transitions and excitons have been observed in semiconducting SWNTs3,4,5,6,7,8,9, but are not expected in metallic tubes owing to non-radiative relaxations. Here, we show that, under low bias voltages, a suspended quasi-metallic SWNT (QM-SWNT) emits light owing to Joule heating, displaying strong peaks in the visible and infrared, corresponding to interband transitions. This is a result of thermal light emission in a one-dimensional system, in stark contrast with featureless blackbody-like emission observed in large bundles of SWNTs or multiwalled nanotubes10,11,12. This allows for probing of the electronic temperature and non-equilibrium hot optical phonons in Joule-heated QM-SWNTs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Visible thermal light emission of quasi-metallic SWNTs.
Figure 2: Thermal light emission of suspended metallic SWNTs with E11 and E22 peaks.
Figure 3: Thermal light emission spectra of a 2.9-µm-long suspended QM-SWNT compared with theory.
Figure 4: Thermal light emission of suspended QM-SWNTs exhibits exponential dependence on power dissipation in the devices.

Similar content being viewed by others

References

  1. Dresselhaus, M. & Dai, H. (eds) MRS 2004 Carbon Nanotube Special Issue 29 (2004).

  2. Saito, R., Fujita, M., Dresselhaus, G. & Dresselhaus, M. S. Electronic structure of graphene tubules based on C60 . Phys. Rev. B 46, 1804–1811 (1992).

    Article  CAS  Google Scholar 

  3. O'Connell, M. J. et al. Band gap fluorescence from individual single-walled carbon nanotubes. Science 297, 593–596 (2002).

    Article  CAS  Google Scholar 

  4. Lefebvre, J., Homma, Y. & Finnie, P. Bright band gap photoluminescence from unprocessed single-walled carbon nanotubes. Phys. Rev. Lett. 90, 217401 (2003).

    Article  CAS  Google Scholar 

  5. Freitag, M. et al. Mobile ambipolar domain in carbon-nanotube infrared emitters. Phys. Rev. Lett. 93, 076803 (2004).

    Article  Google Scholar 

  6. Freitag, M. et al. Hot carrier electroluminescence from a single carbon nanotube. Nano Lett. 4, 1063–1066 (2004).

    Article  CAS  Google Scholar 

  7. Chen, J. et al. Bright infrared emission from electrically induced excitons in carbon nanotubes. Science 310, 1171–1174 (2005).

    Article  CAS  Google Scholar 

  8. Marty, L. et al. Exciton formation and annihilation during 1D impact excitation of carbon nanotubes. Phys. Rev. Lett. 96, 136803 (2006).

    Article  CAS  Google Scholar 

  9. Misewich, J. A. et al. Electrically induced optical emission from a carbon nanotube FET. Science 300, 783–786 (2003).

    Article  CAS  Google Scholar 

  10. Sveningsson, M., Jonsson, M., Nerushev, O. A., Rohmund, F. & Campbell, E. E. B. Blackbody radiation from resistively heated multiwalled carbon nanotubes during field emission. Appl. Phys. Lett. 81, 1095–1097 (2002).

    Article  CAS  Google Scholar 

  11. Wei, J. Q., Zhu, H. W., Wu, D. H. & Wei, B. Q. Carbon nanotube filaments in household light bulbs. Appl. Phys. Lett. 84, 4869–4871 (2004).

    Article  CAS  Google Scholar 

  12. Li, P. et al. Polarized incandescent light emission from carbon nanotubes. Appl. Phys. Lett. 82, 1763–1765 (2003).

    Article  CAS  Google Scholar 

  13. Cao, H., Wang, Q., Wang, D. W. & Dai, H. J. Suspended carbon nanotube quantum wires with two gates. Small 1, 138–141 (2005).

    Article  CAS  Google Scholar 

  14. Cao, J., Wang, Q. & Dai, H. Electron transport in very clean, as-grown suspended carbon nanotubes. Nature Mater. 4, 745–749 (2005).

    Article  CAS  Google Scholar 

  15. Pop, E. et al. Negative differential conductance and hot phonons in suspended nanotube molecular wires. Phys. Rev. Lett. 95, 155505 (2005).

    Article  Google Scholar 

  16. Zhou, C., Kong, J. & Dai, H. Intrinsic electrical properties of single-walled carbon nanotubes with small band gaps. Phys. Rev. Lett. 84, 5604–5607 (2000).

    Article  CAS  Google Scholar 

  17. Ichida, M. et al. Coulomb effects on the fundamental optical transition in semiconducting single-walled carbon nanotubes: Divergent behavior in the small-diameter limit. Phys. Rev. B 65, 241407 (2002).

    Article  Google Scholar 

  18. Mintmire, J. W. & White, C. T. Universal density of states for carbon nanotubes. Phys. Rev. Lett. 81, 2506–2509 (1998).

    Article  CAS  Google Scholar 

  19. Mann, D. et al. Thermally and molecularly stimulated relaxation of hot phonons in suspended carbon nanotubes. J. Phys. Chem. B 110, 1502–1505 (2006).

    Article  CAS  Google Scholar 

  20. Ando, T. Excitons in carbon nanotubes. J. Phys. Soc. Jpn 66, 1066–1073 (1997).

    Article  CAS  Google Scholar 

  21. Pop, E., Mann, D., Reifenberg, J., Goodson, K. E. & Dai, H. J. in Intl Electron Devices Meeting (IEDM) 253–256 (Washington DC, 2005).

  22. Hata, K. et al. Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science 306, 1362–1364 (2004).

    Article  CAS  Google Scholar 

  23. Bachilo, S. M. et al. Structure-assigned optical spectra of single-walled carbon nanotubes. Science 298, 2361–2366 (2002).

    Article  CAS  Google Scholar 

  24. Weisman, R. B. & Bachilo, S. M. Dependence of optical transition energies on structure for single-walled carbon nanotubes in aqueous suspension: An empirical Kataura plot. Nano Lett. 3, 1235–1238 (2003).

    Article  CAS  Google Scholar 

  25. Milosevic, I., Vukovic, T., Dmitrovic, S. & Damnjanovic, M. Polarized optical absorption in carbon nanotubes: A symmetry-based approach. Phys. Rev. B 67, 165418 (2003).

    Article  Google Scholar 

  26. Saito, R., Dresselhaus, G. & Dresselhaus, M. S. Trigonal warping effect of carbon nanotubes. Phys. Rev. B 61, 2981–2990 (2000).

    Article  CAS  Google Scholar 

  27. Spataru, C. D., Ismail-Beigi, S., Benedict, L. X. & Louie, S. G. Excitonic effects and optical spectra of single-walled carbon nanotubes, Phys. Rev. Lett. 92, 077402 (2004).

    Article  Google Scholar 

  28. Hertel, T. & Moos, G. Influence of excited electron lifetimes on the electronic structure of carbon nanotubes. Chem. Phys. Lett. 320, 359–364 (2000).

    Article  CAS  Google Scholar 

  29. Goupalov, S. V. Optical transitions in carbon nanotubes. Phys. Rev. B 72, 195403–195407 (2005).

    Article  Google Scholar 

  30. Rosencher, E. & Vinter, B. Optoelectronics (Cambridge Univ. Press, Cambridge, UK, 2002).

Download references

Acknowledgements

We thank W. E. Moerner for use of the confocal optical setup. This work was supported in part by MARCO MSD Focus Center and a NSF-NIRT.

Author information

Authors and Affiliations

Authors

Contributions

H.D., D.M. and Y.K. conceived and designed the experiments. D.M., Y.K., A.K., E.P., J.C, X.W., L.Z., Q.W. and J.G. performed the experiments and analysed the data. H.D., D.M. and Y.K. co-wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Hongjie Dai.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mann, D., Kato, Y., Kinkhabwala, A. et al. Electrically driven thermal light emission from individual single-walled carbon nanotubes. Nature Nanotech 2, 33–38 (2007). https://doi.org/10.1038/nnano.2006.169

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2006.169

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing