Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Activation of EGFR and ERK by rhomboid signaling regulates the consolidation and maintenance of sleep in Drosophila

Abstract

Epidermal growth factor receptor (EGFR) signaling in the mammalian hypothalamus is important in the circadian regulation of activity. We have examined the role of this pathway in the regulation of sleep in Drosophila melanogaster. Our results demonstrate that rhomboid (Rho)- and Star-mediated activation of EGFR and ERK signaling increases sleep in a dose-dependent manner, and that blockade of rhomboid (rho) expression in the nervous system decreases sleep. The requirement of rho for sleep localized to the pars intercerebralis, a part of the fly brain that is developmentally and functionally analogous to the hypothalamus in vertebrates. These results suggest that sleep and its regulation by EGFR signaling may be ancestral to insects and mammals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Increased sleep during day and night after activation of EGFR.
Figure 2: Dose-dependent increase in sleep after overexpression of Rho or Rho and Star.
Figure 3: Reduced sleep after directed rho-RNAi expression.
Figure 4: Increased sleep in c767, 50Y and c687 flies overexpressing EGFR ligand.
Figure 5: Lack of circadian shift after inhibition of sleep with rhoDN.
Figure 6: Increased sleep correlated with increased levels of ppERK.
Figure 7: Rho is expressed in pars intercerebralis (PI) cells.

Similar content being viewed by others

References

  1. Hendricks, J.C. et al. Rest in Drosophila is a sleep-like state. Neuron 25, 129–138 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Shaw, P.J., Cirelli, C., Greenspan, R.J. & Tononi, G. Correlates of sleep and waking in Drosophila melanogaster. Science 287, 1834–1837 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Andretic, R., van Swinderen, B. & Greenspan, R.J. Dopaminergic modulation of arousal in Drosophila. Curr. Biol. 15, 1165–1175 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Koh, K., Evans, J.M., Hendricks, J.C. & Sehgal, A. A Drosophila model for age-associated changes in sleep:wake cycles. Proc. Natl. Acad. Sci. USA 103, 13843–13847 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kramer, A. et al. Regulation of daily locomotor activity and sleep by hypothalamic EGF receptor signaling. Science 294, 2511–2515 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Kushikata, T., Fang, J., Chen, Z., Wang, Y. & Krueger, J.M. Epidermal growth factor enhances spontaneous sleep in rabbits. Am. J. Physiol. 275, R509–R514 (1998).

    CAS  PubMed  Google Scholar 

  7. Urban, S., Lee, J.R. & Freeman, M. A family of Rhomboid intramembrane proteases activates all Drosophila membrane-tethered EGF ligands. EMBO J. 21, 4277–4286 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shilo, B.Z. Signaling by the Drosophila epidermal growth factor receptor pathway during development. Exp. Cell Res. 284, 140–149 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Shilo, B.Z. Regulating the dynamics of EGF receptor signaling in space and time. Development 132, 4017–4027 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Guichard, A. et al. Rhomboid and Star interact synergistically to promote EGFR/MAPK signaling during Drosophila wing vein development. Development 126, 2663–2676 (1999).

    CAS  PubMed  Google Scholar 

  11. Brand, A.H. & Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415 (1993).

    CAS  PubMed  Google Scholar 

  12. Sturtevant, M.A., Roark, M. & Bier, E. The Drosophila rhomboid gene mediates the localized formation of wing veins and interacts genetically with components of the EGFR signaling pathway. Genes Dev. 7, 961–973 (1993).

    Article  CAS  PubMed  Google Scholar 

  13. Schweitzer, R., Shaharabany, M., Seger, R. & Shilo, B.Z. Secreted Spitz triggers the DER signaling pathway and is a limiting component in embryonic ventral ectoderm determination. Genes Dev. 9, 1518–1529 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Freeman, M. Reiterative use of the EGF receptor triggers differentiation of all cell types in the Drosophila eye. Cell 87, 651–660 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Urban, S., Lee, J.R. & Freeman, M. Drosophila rhomboid-1 defines a family of putative intramembrane serine proteases. Cell 107, 173–182 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Guichard, A., Srinivasan, S., Zimm, G. & Bier, E. A screen for dominant mutations applied to components in the Drosophila EGFR pathway. Proc. Natl. Acad. Sci. USA 99, 3752–3757 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. McGuire, S.E., Le, P.T., Osborn, A.J., Matsumoto, K. & Davis, R.L. Spatiotemporal rescue of memory dysfunction in Drosophila. Science 302, 1765–1768 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Sturtevant, M.A., O'Neill, J.W. & Bier, E. Down-regulation of Drosophila EGFR mRNA levels following hyperactivated receptor signaling. Development 120, 2593–2600 (1994).

    CAS  PubMed  Google Scholar 

  19. Welsh, J.B., Gill, G.N., Rosenfeld, M.G. & Wells, A. A negative feedback loop attenuates EGF-induced morphological changes. J. Cell Biol. 114, 533–543 (1991).

    Article  CAS  PubMed  Google Scholar 

  20. Wiley, H.S. et al. The role of tyrosine kinase activity in endocytosis, compartmentation, and down-regulation of the epidermal growth factor receptor. J. Biol. Chem. 266, 11083–11094 (1991).

    CAS  PubMed  Google Scholar 

  21. Ng, D.C. & Bogoyevitch, M.A. The mechanism of heat shock activation of ERK mitogen-activated protein kinases in the interleukin 3–dependent ProB cell line BaF3. J. Biol. Chem. 275, 40856–40866 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Williams, J.A., Su, H.S., Bernards, A., Field, J. & Sehgal, A. A circadian output in Drosophila mediated by neurofibromatosis-1 and Ras/MAPK. Science 293, 2251–2256 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Schejter, E.D., Segal, D., Glazer, L. & Shilo, B.Z. Alternative 5′ exons and tissue-specific expression of the Drosophila EGF receptor homolog transcripts. Cell 46, 1091–1101 (1986).

    Article  CAS  PubMed  Google Scholar 

  24. Botella, J.A. et al. Deregulation of the Egfr/Ras signaling pathway induces age-related brain degeneration in the Drosophila mutant vap. Mol. Biol. Cell 14, 241–250 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Joiner, W.J., Crocker, A., White, B.H. & Sehgal, A. Sleep in Drosophila is regulated by adult mushroom bodies. Nature 441, 757–760 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Pitman, J.L., McGill, J.J., Keegan, K.P. & Allada, R. A dynamic role for the mushroom bodies in promoting sleep in Drosophila. Nature 441, 753–756 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Rajashekhar, K.P. & Singh, R.N. Neuroarchitecture of the tritocerebrum of Drosophila melanogaster. J. Comp. Neurol. 349, 633–645 (1994).

    Article  CAS  PubMed  Google Scholar 

  28. Siegmund, T. & Korge, G. Innervation of the ring gland of Drosophila melanogaster. J. Comp. Neurol. 431, 481–491 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. de Velasco, B. et al. Specification and development of the pars intercerebralis and pars lateralis, neurocndocrine command centers in the Drosophila brain. Dev. Biol. 302, 309–323 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Veelaert, D., Schoofs, L. & De Loof, A. Peptidergic control of the corpus cardiacum-corpora allata complex of locusts. Int. Rev. Cytol. 182, 249–302 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. De Velasco, B., Shen, J., Go, S. & Hartenstein, V. Embryonic development of the Drosophila corpus cardiacum, a neuroendocrine gland with similarity to the vertebrate pituitary, is controlled by sine oculis and glass. Dev. Biol. 274, 280–294 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Kilduff, T.S. & Peyron, C. The hypocretin/orexin ligand-receptor system: implications for sleep and sleep disorders. Trends Neurosci. 23, 359–365 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Saper, C.B., Scammell, T.E. & Lu, J. Hypothalamic regulation of sleep and circadian rhythms. Nature 437, 1257–1263 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Mignot, E., Taheri, S. & Nishino, S. Sleeping with the hypothalamus: emerging therapeutic targets for sleep disorders. Nat. Neurosci. 5 Suppl, 1071–1075 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Saper, C.B., Chou, T.C. & Scammell, T.E. The sleep switch: hypothalamic control of sleep and wakefulness. Trends Neurosci. 24, 726–731 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Yarden, Y. & Sliwkowski, M.X. Untangling the ErbB signalling network. Nat. Rev. Mol. Cell Biol. 2, 127–137 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Garcia, R.A., Vasudevan, K. & Buonanno, A. The neuregulin receptor ErbB-4 interacts with PDZ-containing proteins at neuronal synapses. Proc. Natl. Acad. Sci. USA 97, 3596–3601 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Huang, Y.Z. et al. Regulation of neuregulin signaling by PSD-95 interacting with ErbB4 at CNS synapses. Neuron 26, 443–455 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Suzuki, T., Okumura-Noji, K. & Nishida, E. ERK2-type mitogen-activated protein kinase (MAPK) and its substrates in postsynaptic density fractions from the rat brain. Neurosci. Res. 22, 277–285 (1995).

    Article  CAS  PubMed  Google Scholar 

  40. Suzuki, T., Mitake, S. & Murata, S. Presence of upstream and downstream components of a mitogen-activated protein kinase pathway in the PSD of the rat forebrain. Brain Res. 840, 36–44 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Humbert, P., Russell, S. & Richardson, H. Dlg, Scribble and Lgl in cell polarity, cell proliferation and cancer. Bioessays 25, 542–553 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Hoeffer, C.A., Sanyal, S. & Ramaswami, M. Acute induction of conserved synaptic signaling pathways in Drosophila melanogaster. J. Neurosci. 23, 6362–6372 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sweatt, J.D. Mitogen-activated protein kinases in synaptic plasticity and memory. Curr. Opin. Neurobiol. 14, 311–317 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Schrader, L.A. et al. ERK/MAPK regulates the Kv4.2 potassium channel by direct phosphorylation of the pore-forming subunit. Am. J. Physiol. Cell Physiol. 290, C852–C861 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Cirelli, C. et al. Reduced sleep in Drosophila Shaker mutants. Nature 434, 1087–1092 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Shaw, P.J., Tononi, G., Greenspan, R.J. & Robinson, D.F. Stress response genes protect against lethal effects of sleep deprivation in Drosophila. Nature 417, 287–291 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Sokal, R.R. & Rohlf, F.J. Biometry: the Principles and Practice of Statistics in Biological Research (Freeman, New York, 1995).

    Google Scholar 

  48. Rosato, E. & Kyriacou, C.P. Analysis of locomotor activity rhythms in Drosophila. Nat. Protoc. 1, 559–568 (2006).

    Article  PubMed  Google Scholar 

  49. Roenneberg, T. & Taylor, W. Automated recordings of bioluminescence with special reference to the analysis of circadian rhythms. Methods Enzymol. 305, 104–119 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. Basyuk, E., Bertrand, E. & Journot, L. Alkaline fixation drastically improves the signal of in situ hybridization. Nucleic Acids Res. 28, E46 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We dedicate this paper to the memory of our mentor, colleague and friend, John Newport, who died 25 December 2005. We thank A. Guichard for essential technical guidance and advice, E. J. Kim and J. Wagner for technical assistance, M. Kaneko, R. Andretic, H. Dierick, P. Shaw, C.P. Kyriacou, E. Green, T. Roenneberg and M. Merrow for assistance with data analysis, and E. Bier, J. Wang, W. McGinnis, R. Andretic, M. Kaneko and H. Dierick for comments on the manuscript. This work was supported by a US National Institutes of Health grant (J.W.N.) and a US National Science Foundation grant No. 0432063 (R.J.G.). R.J.G. is the Dorothy and Lewis B. Cullman Fellow at the Neurosciences Institute, which is supported by the Neurosciences Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph J Greenspan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1 and 2, Tables 1–3 (PDF 6035 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Foltenyi, K., Greenspan, R. & Newport, J. Activation of EGFR and ERK by rhomboid signaling regulates the consolidation and maintenance of sleep in Drosophila. Nat Neurosci 10, 1160–1167 (2007). https://doi.org/10.1038/nn1957

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1957

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing