Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A transient network of intrinsically bursting starburst cells underlies the generation of retinal waves

Abstract

Pharmacologically isolated starburst amacrine cells (SACs) in perinatal rabbit retinas spontaneously generated semiperiodic calcium spikes and long-lasting after-hyperpolarizations (AHPs), mediated by calcium-activated, cyclic AMP–sensitive potassium currents. These AHPs, rather than a depletion of neurotransmitters (as was previously believed), produced the refractory period of spontaneous retinal waves and set the upper limit of the wave frequency. Each SAC received inputs from roughly 10–30 neighboring SACs during a wave. These inputs synchronized and reshaped the intrinsic bursts to produce network oscillations at a rhythm different from that of individual SACs. With maturation, the semiperiodic bursts in SACs disappeared, owing to reduced intrinsic excitability and increased network inhibition. Thus, retinal waves are generated by a transient and specific network of cell-autonomous oscillators synchronized by reciprocally excitatory connections.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cell-autonomous activity in E29–P1 SACs.
Figure 2: Cell-autonomous activities of SACs under Ca2+ imaging.
Figure 3: Temporal properties of the bursts in SACs.
Figure 4: The ionic mechanism of intrinsic bursts in SACs.
Figure 5: Mechanism of the postwave refractory process.
Figure 6: Network contributions to rhythmogenesis.
Figure 7: Developmental loss of intrinsic bursts in SACs.

Similar content being viewed by others

References

  1. Wong, R.O. Retinal waves and visual system development. Annu. Rev. Neurosci. 22, 29–47 (1999).

    Article  CAS  Google Scholar 

  2. Torborg, C.L. & Feller, M.B. Spontaneous patterned retinal activity and the refinement of retinal projections. Prog. Neurobiol. 76, 213–235 (2005).

    Article  Google Scholar 

  3. Stellwagen, D. & Shatz, C.J. An instructive role for retinal waves in the development of retinogeniculate connectivity. Neuron 33, 357–367 (2002).

    Article  CAS  Google Scholar 

  4. Torborg, C.L., Hansen, K.A. & Feller, M.B. High frequency, synchronized bursting drives eye-specific segregation of retinogeniculate projections. Nat. Neurosci. 8, 72–78 (2005).

    Article  CAS  Google Scholar 

  5. McLaughlin, T., Torborg, C.L., Feller, M.B. & O'Leary, D.D. Retinotopic map refinement requires spontaneous retinal waves during a brief critical period of development. Neuron 40, 1147–1160 (2003).

    Article  CAS  Google Scholar 

  6. Grubb, M.S., Rossi, F.M., Changeux, J.P. & Thompson, I.D. Abnormal functional organization in the dorsal lateral geniculate nucleus of mice lacking the beta 2 subunit of the nicotinic acetylcholine receptor. Neuron 40, 1161–1172 (2003).

    Article  CAS  Google Scholar 

  7. Chandrasekaran, A.R., Plas, D.T., Gonzalez, E. & Crair, M.C. Evidence for an instructive role of retinal activity in retinotopic map refinement in the superior colliculus of the mouse. J. Neurosci. 25, 6929–6938 (2005).

    Article  CAS  Google Scholar 

  8. Mrsic-Flogel, T.D. et al. Altered map of visual space in the superior colliculus of mice lacking early retinal waves. J. Neurosci. 25, 6921–6928 (2005).

    Article  CAS  Google Scholar 

  9. Feller, M.B. Spontaneous correlated activity in developing neural circuits. Neuron 22, 653–656 (1999).

    Article  CAS  Google Scholar 

  10. O'Donovan, M.J. The origin of spontaneous activity in developing networks of the vertebrate nervous system. Curr. Opin. Neurobiol. 9, 94–104 (1999).

    Article  CAS  Google Scholar 

  11. Luthi, A. & McCormick, D.A. H-current: properties of a neuronal and network pacemaker. Neuron 21, 9–12 (1998).

    Article  CAS  Google Scholar 

  12. Ramirez, J.M., Tryba, A.K. & Pena, F. Pacemaker neurons and neuronal networks: an integrative view. Curr. Opin. Neurobiol. 14, 665–674 (2004).

    Article  CAS  Google Scholar 

  13. Buzsaki, G. & Draguhn, A. Neuronal oscillations in cortical networks. Science 304, 1926–1929 (2004).

    Article  CAS  Google Scholar 

  14. Zheng, J.J., Lee, S. & Zhou, Z.J. A developmental switch in the excitability and function of the starburst network in the mammalian retina. Neuron 44, 851–864 (2004).

    Article  CAS  Google Scholar 

  15. Syed, M.M., Lee, S., Zheng, J. & Zhou, Z.J. Stage-dependent dynamics and modulation of spontaneous waves in the developing rabbit retina. J. Physiol. (Lond.) 560, 533–549 (2004).

    Article  CAS  Google Scholar 

  16. Bansal, A. et al. Mice lacking specific nicotinic acetylcholine receptor subunits exhibit dramatically altered spontaneous activity patterns and reveal a limited role for retinal waves in forming ON and OFF circuits in the inner retina. J. Neurosci. 20, 7672–7681 (2000).

    Article  CAS  Google Scholar 

  17. Feller, M.B., Wellis, D.P., Stellwagen, D., Werblin, F.S. & Shatz, C.J. Requirement for cholinergic synaptic transmission in the propagation of spontaneous retinal waves. Science 272, 1182–1187 (1996).

    Article  CAS  Google Scholar 

  18. Zhou, Z.J. & Zhao, D. Coordinated transitions in neurotransmitter systems for the initiation and propagation of spontaneous retinal waves. J. Neurosci. 20, 6570–6577 (2000).

    Article  CAS  Google Scholar 

  19. Wong, W.T., Myhr, K.L., Miller, E.D. & Wong, R.O. Developmental changes in the neurotransmitter regulation of correlated spontaneous retinal activity. J. Neurosci. 20, 351–360 (2000).

    Article  CAS  Google Scholar 

  20. Zhou, Z.J. The function of the cholinergic system in the developing mammalian retina. Prog. Brain Res. 131, 599–613 (2001).

    Article  CAS  Google Scholar 

  21. Zhou, Z.J. Direct participation of starburst amacrine cells in spontaneous rhythmic activities in the developing mammalian retina. J. Neurosci. 18, 4155–4165 (1998).

    Article  CAS  Google Scholar 

  22. Ames, A. & Nesbett, F.B. In vitro retina as an experimental model of the central nervous system. J. Neurochem. 37, 867–877 (1981).

    Article  CAS  Google Scholar 

  23. Stellwagen, D., Shatz, C.J. & Feller, M.B. Dynamics of retinal waves are controlled by cyclic AMP. Neuron 24, 673–685 (1999).

    Article  CAS  Google Scholar 

  24. Faber, E.S. & Sah, P. Calcium-activated potassium channels: multiple contributions to neuronal function. Neuroscientist 9, 181–194 (2003).

    Article  CAS  Google Scholar 

  25. Lancaster, B. & Adams, P.R. Calcium-dependent current generating the afterhyperpolarization of hippocampal neurons. J. Neurophysiol. 55, 1268–1282 (1986).

    Article  CAS  Google Scholar 

  26. Lancaster, B. & Nicoll, R.A. Properties of two calcium-activated hyperpolarizations in rat hippocampal neurones. J. Physiol. (Lond.) 389, 187–203 (1987).

    Article  CAS  Google Scholar 

  27. Sah, P. & Clements, J.D. Photolytic manipulation of [Ca2+]i reveals slow kinetics of potassium channels underlying the after hyperpolarization in hippocampal pyramidal neurons. J. Neurosci. 19, 3657–3664 (1999).

    Article  CAS  Google Scholar 

  28. Sah, P. Ca(2+)-activated K+ currents in neurones: types, physiological roles and modulation. Trends Neurosci. 19, 150–154 (1996).

    Article  CAS  Google Scholar 

  29. Sah, P. & Faber, E.S. Channels underlying neuronal calcium-activated potassium currents. Prog. Neurobiol. 66, 345–353 (2002).

    Article  CAS  Google Scholar 

  30. Vogalis, F., Storm, J.F. & Lancaster, B. SK channels and the varieties of slow after-hyperpolarizations in neurons. Eur. J. Neurosci. 18, 3155–3166 (2003).

    Article  Google Scholar 

  31. Shah, M.M., Miscony, Z., Javadzadeh-Tabatabaie, M., Ganellin, C.R. & Haylett, D.G. Clotrimazole analogues: effective blockers of the slow afterhyperpolarization in cultured rat hippocampal pyramidal neurones. Br. J. Pharmacol. 132, 889–898 (2001).

    Article  CAS  Google Scholar 

  32. Ozaita, A. et al. A unique role for Kv3 voltage-gated potassium channels in starburst amacrine cell signaling in mouse retina. J. Neurosci. 24, 7335–7343 (2004).

    Article  CAS  Google Scholar 

  33. Sipila, S.T., Huttu, K., Soltesz, I., Voipio, J. & Kaila, K. Depolarizing GABA acts on intrinsically bursting pyramidal neurons to drive giant depolarizing potentials in the immature hippocampus. J. Neurosci. 25, 5280–5289 (2005).

    Article  Google Scholar 

  34. Tauchi, M. & Masland, R.H. The shape and arrangement of the cholinergic neurons in the rabbit retina. Proc. R. Soc. Lond. B 223, 101–119 (1984).

    Article  CAS  Google Scholar 

  35. Vaney, D.I. 'Coronate' amacrine cells in the rabbit retina have the 'starburst' dendritic morphology. Proc. R. Soc. Lond. B 220, 501–508 (1984).

    Article  CAS  Google Scholar 

  36. Famiglietti, E.V. Starburst amacrine cells: morphological constancy and systematic variation in the anisotropic field of rabbit retinal neurons. J. Neurosci. 5, 562–577 (1985).

    Article  CAS  Google Scholar 

  37. Feller, M.B., Butts, D.A., Aaron, H.L., Rokhsar, D.S. & Shatz, J.C. Dynamic processes shape spatiotemporal properties of retinal waves. Neuron 19, 293–306 (1997).

    Article  CAS  Google Scholar 

  38. Jackson, A.C., Yao, G.L. & Bean, B.P. Mechanism of spontaneous firing in dorsomedial suprachiasmatic nucleus neurons. J. Neurosci. 24, 7985–7998 (2004).

    Article  CAS  Google Scholar 

  39. McCormick, D.A. & Huguenard, J.R. A model of the electrophysiological properties of thalamocortical relay neurons. J. Neurophysiol. 68, 1384–1400 (1992).

    Article  CAS  Google Scholar 

  40. Huguenard, J.R. & McCormick, D.A. Simulation of the currents involved in rhythmic oscillations in thalamic relay neurons. J. Neurophysiol. 68, 1373–1383 (1992).

    Article  CAS  Google Scholar 

  41. Schwindt, P.C., Spain, W.J. & Crill, W.E. Effects of intracellular calcium chelation on voltage-dependent and calcium-dependent currents in cat neocortical neurons. Neuroscience 47, 571–578 (1992).

    Article  CAS  Google Scholar 

  42. Zhang, L. et al. Potentiation of a slow Ca(2+)-dependent K+ current by intracellular Ca2+ chelators in hippocampal CA1 neurons of rat brain slices. J. Neurophysiol. 74, 2225–2241 (1995).

    Article  CAS  Google Scholar 

  43. Velumian, A.A. & Carlen, P.L. Differential control of three after-hyperpolarizations in rat hippocampal neurones by intracellular calcium buffering. J. Physiol. (Lond.) 517, 201–216 (1999).

    Article  CAS  Google Scholar 

  44. Petit-Jacques, J., Volgyi, B., Rudy, B. & Bloomfield, S.A. Spontaneous oscillatory activity of starburst amacrine cells in the mouse retina. J. Neurophysiol. 94, 1770–1780 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Q. Yang and T. Mon for help with some imaging experiments and A. Hayar for discussions on cross-correlation analysis. This study was supported by US National Institutes of Health grant R01EY10894 (to Z.J.Z.), unrestricted funds from Research to Prevent Blindness Inc. and from the Pat and Willard Walker Eye Research Center, and by the University of Arkansas for Medical Sciences Tobacco Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z Jimmy Zhou.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Cross-correlation analysis among neighboring starburst amacrine cells (SACs) under Ca2+ imaging. (PDF 96 kb)

Supplementary Fig. 2

Excitability of SACs during the slow AHP. (PDF 445 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, J., Lee, S. & Zhou, Z. A transient network of intrinsically bursting starburst cells underlies the generation of retinal waves. Nat Neurosci 9, 363–371 (2006). https://doi.org/10.1038/nn1644

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1644

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing