Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Hippocampal map realignment and spatial learning

Abstract

The spatial selectivity of hippocampal neurons suggests that they contribute to an internal representation of current location. The activity of hippocampal pyramidal cells was recorded while adult (10–13 months old) and aged (24–28 months old) rats performed a task in which two spatial reference frames were put in conflict. Rats attempted to find an unmarked goal whose position was fixed relative to only one of the two reference frames. The ability of a rat's hippocampus to adjust to the conflicting information and use the 'correct' position estimate (hippocampal map 'realignment') was correlated with the rat's ability to find the hidden goal. In addition, aged rats were impaired relative to adult rats in both goal-finding accuracy and map realignment. Thus, changes in the effectiveness with which the hippocampal spatial representation is updated on the basis of external cues may contribute to both within-age-group spatial learning variability and age-related spatial learning deficits.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The linear track task.
Figure 2: Estimation of task learning from the speed profile of one rat.
Figure 3: Aged rats did not learn the location of the goal as well as did adult rats.
Figure 4: Mismatch of position information from self-motion and room cues during outbound journeys.
Figure 5: Place fields can be aligned to the room or to the start box (or they may show intermediate alignment; see Fig. 6.)
Figure 6: Calculation of the transition point.
Figure 7: Mean field slopes at each position (10-cm bins) in aged and adult rats.
Figure 8: Learning of the goal location was correlated with the position of map realignment.

Similar content being viewed by others

References

  1. O'Keefe, J. & Dostrovsky, J. The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res. 34, 171–175 (1971).

    Article  CAS  Google Scholar 

  2. Wilson, M.A. & McNaughton, B.L. Dynamics of the hippocampal ensemble code for space. Science 261, 1055–1058 (1993).

    Article  CAS  Google Scholar 

  3. O'Keefe, J. & Nadel, L. The Hippocampus as a Cognitive Map (Clarendon Press, Oxford, 1978).

    Google Scholar 

  4. Pico, R.M., Gerbrandt, L.K., Pondel, M. & Ivy, G. During stepwise cue deletion, rat place behaviors correlate with place unit responses. Brain Res. 330, 369–372 (1985).

    Article  CAS  Google Scholar 

  5. Shapiro, M.L. et al. Intrahippocampal grafts of fetal basal forebrain tissue alter place fields in the hippocampus of rats with fimbria-fornix lesions. Neuroscience 32, 1–18 (1989).

    Article  CAS  Google Scholar 

  6. Markus, E.J., Barnes, C.A., McNaughton, B.L., Gladden, V.L. & Skaggs, W.E. Spatial information content and reliability of hippocampal CA1 neurons: Effects of visual input. Hippocampus 4, 410–421 (1994).

    Article  CAS  Google Scholar 

  7. Mizumori, S.J.Y., Miya, D.Y. & Ward, K.E. Reversible inactivation of the lateral dorsal thalamus disrupts hippocampal place representation and impairs spatial learning. Brain Res. 644, 168–174 (1994).

    Article  CAS  Google Scholar 

  8. Lenck-Santini, P.P., Save, E. & Poucet, B. Evidence for a relationship between place-cell spatial firing and spatial memory performance. Hippocampus 11, 377–390 (2001).

    Article  CAS  Google Scholar 

  9. Cooper, B.G. & Mizumori, S.J. Temporary inactivation of the retrosplenial cortex causes a transient reorganization of spatial coding in the hippocampus. J. Neurosci. 21, 3986–4001 (2001).

    Article  CAS  Google Scholar 

  10. Wilson, M.A. & Tonegawa, S. Synaptic plasticity, place cells and spatial memory: Study with second generation knockouts. Trends Neurosci. 20, 102–106 (1997).

    Article  CAS  Google Scholar 

  11. Rotenberg, A., Abel, T., Hawkins, R.D., Kandel, E.R. & Muller, R.U. Parallel instabilities of long-term potentiation, place cells, and learning caused by decreased protein kinase A activity. J. Neurosci. 20, 8096–8102 (2000).

    Article  CAS  Google Scholar 

  12. Bures, J., Fenton, A.A., Kaminsky, Y. & Zinyuk, L. Place cells and place navigation. Proc. Natl. Acad. Sci. USA 94, 343–350 (1997).

    Article  CAS  Google Scholar 

  13. Jeffery, K.J., Gilbert, A., Burton, S. & Strudwick, A. Preserved performance in a hippocampal-dependent spatial task despite complete place cell remapping. Hippocampus 13, 133–147 (2003).

    Article  Google Scholar 

  14. O'Keefe, J. & Speakman, A. Single unit activity in the rat hippocampus during a spatial memory task. Exp. Brain Res. 68, 1–27 (1987).

    Article  CAS  Google Scholar 

  15. Lenck-Santini, P.P., Muller, R.U., Save, E. & Poucet, B. Relationships between place cell firing fields and navigational decisions by rats. J. Neurosci. 22, 9035–9047 (2002).

    Article  CAS  Google Scholar 

  16. Gallagher, M. & Pelleymounter, M.A. Spatial learning deficits in old rats: A model for memory decline in the aged. Neurobiol. Aging 9, 363–369 (1988).

    Article  CAS  Google Scholar 

  17. Barnes, C.A. Animal models of age-related cognitive decline. in Handbook of Neuropsychology (eds. Boller, F. & Grafman, J.) 169–196 (Elsevier Science Publishers, Amsterdam, 1990).

    Google Scholar 

  18. Rosenzweig, E.S. & Barnes, C.A. Impact of aging on hippocampal function: Plasticity, network dynamics, and cognition. Prog. Neurobiol. in press (2003).

  19. Foster, T.C. Involvement of hippocampal synaptic plasticity in age-related memory decline. Brain Res. Brain Res. Rev. 30, 236–249 (1999).

    Article  CAS  Google Scholar 

  20. Bliss, T.V.P. & Gardner-Medwin, A.R. Long-lasting potentiation of synaptic transmission in the dentate area of the unanaesthetised rabbit following stimulation of the perforant path. J. Physiol. (Lond). 232, 357–374 (1973).

    Article  CAS  Google Scholar 

  21. Bliss, T.V.P. & Lomo, T. Long-lasting potentiation of synaptic transmission in the dentate area of the anesthetized rabbit following stimulation of the perforant path. J. Physiol. (Lond). 232, 331–356 (1973).

    Article  CAS  Google Scholar 

  22. Levy, W.B. & Steward, O. Synapses as associative memory elements in the hippocampal formation. Brain Res. 175, 233–245 (1979).

    Article  CAS  Google Scholar 

  23. McNaughton, B.L., Douglas, R.M. & Goddard, G.V. Synaptic enhancement in fascia dentata: Cooperativity among coactive afferents. Brain Res. 157, 277–293 (1978).

    Article  CAS  Google Scholar 

  24. McNaughton, B.L. et al. Deciphering the hippocampal polyglot: The hippocampus as a path integration system. J. Exp. Biol. 199, 173–185 (1996).

    CAS  PubMed  Google Scholar 

  25. Samsonovich, A. & McNaughton, B.L. Path integration and cognitive mapping in a continuous attractor neural network model. J. Neurosci. 17, 5900–5920 (1997).

    Article  CAS  Google Scholar 

  26. Redish, A.D. & Touretzky, D.S. Cognitive maps beyond the hippocampus. Hippocampus 7, 1–21 (1997).

    Article  Google Scholar 

  27. Redish, A.D. Beyond the Cognitive Map: From Place Cells to Episodic Memory (MIT Press, Cambridge, 1999).

  28. Touretzky, D.S. & Redish, A.D. Theory of rodent navigation based on interacting representations of space. Hippocampus 6, 247–270 (1996).

    Article  CAS  Google Scholar 

  29. Muller, R.U. & Kubie, J.L. The effects of changes in the environment on the spatial firing of hippocampal complex-spike cells. J. Neurosci. 7, 1951–1968 (1987).

    Article  CAS  Google Scholar 

  30. Knierim, J.J., Kudrimoti, H.S. & McNaughton, B.L. Place cells, head direction cells, and the learning of landmark stability. J. Neurosci. 15, 1648–1659 (1995).

    Article  CAS  Google Scholar 

  31. O'Keefe, J. & Conway, D.H. Hippocampal place units in the freely moving rat: Why they fire where they fire. Exp. Brain Res. 31, 573–590 (1978).

    Article  CAS  Google Scholar 

  32. Gothard, K.M., Skaggs, W.E. & McNaughton, B.L. Dynamics of mismatch correction in the hippocampal ensemble code for space: Interaction between path integration and environmental cues. J. Neurosci. 16, 8027–8040 (1996).

    Article  CAS  Google Scholar 

  33. Gothard, K.M., Hoffman, K.L., Battaglia, F.P. & McNaughton, B.L. Dentate gyrus and CA1 ensemble activity during spatial reference frame shifts in the presence and absence of visual input. J. Neurosci. 21, 7284–7292 (2001).

    Article  CAS  Google Scholar 

  34. O'Keefe, J. & Burgess, N. Geometric determinants of the place fields of hippocampal neurons. Nature 381, 425–428 (1996).

    Article  CAS  Google Scholar 

  35. Jeffery, K.J. & O'Keefe, J.M. Learned interaction of visual and idiothetic cues in the control of place field orientation. Exp. Brain Res. 127, 151–161 (1999).

    Article  CAS  Google Scholar 

  36. Sharp, P.E., Blair, H.T., Etkin, D. & Tzanetos, D.B. Influences of vestibular and visual motion information on the spatial firing patterns of hippocampal place cells. J. Neurosci. 15, 173–189 (1995).

    Article  CAS  Google Scholar 

  37. Redish, A.D., Rosenzweig, E.S., Bohanick, J.D., McNaughton, B.L. & Barnes, C.A. Dynamics of hippocampal ensemble activity realignment: Time vs. space. J. Neurosci. 20, 9298–9309 (2000).

    Article  CAS  Google Scholar 

  38. Tanila, H., Sipilä, P., Shapiro, M. & Eichenbaum, H. Brain aging: Impaired coding of novel environmental cues. J. Neurosci. 17, 5167–5174 (1997).

    Article  CAS  Google Scholar 

  39. Tanila, H., Shapiro, M., Gallagher, M. & Eichenbaum, H. Brain aging: changes in the nature of information coding by the hippocampus. J. Neurosci. 17, 5155–5166 (1997).

    Article  CAS  Google Scholar 

  40. Wilson, I.A. et al. Place cell rigidity correlates with impaired spatial learning in aged rats. Neurobiol. Aging 24, 297–305 (2003).

    Article  CAS  Google Scholar 

  41. Redish, A.D. et al. Independence of firing correlates of anatomically proximate hippocampal pyramidal cells. J. Neurosci. 21, RC134, 1–6 (2001).

    Article  Google Scholar 

  42. Gothard, K.M., Skaggs, W.E., Moore, K.M. & McNaughton, B.L. Binding of hippocampal CA1 neural activity to multiple reference frames in a landmark-based navigation task. J. Neurosci. 16, 823–835 (1996).

    Article  CAS  Google Scholar 

  43. McNaughton, B.L., O'Keefe, J. & Barnes, C.A. The stereotrode: A new technique for simultaneous isolation of several single units in the central nervous system from multiple unit records. J. Neurosci. Methods 8, 391–397 (1983).

    Article  CAS  Google Scholar 

  44. O'Keefe, J. & Recce, M.L. Phase relationships between hippocampal place units and the EEG theta rhythm. Hippocampus 3, 317–330 (1993).

    Article  CAS  Google Scholar 

  45. Mizumori, S.J.Y., McNaughton, B.L. & Barnes, C.A. A comparison of supramammillary and medial septal influences on hippocampal field potentials and single-unit activity. J. Neurophysiol. 61, 15–31 (1989).

    Article  CAS  Google Scholar 

  46. Ranck, J.B. Jr. Studies on single neurons in dorsal hippocampal formation and septum in unrestrained rats. I. Behavioral correlates and firing repertoires. Exp. Neurol. 41, 461–531 (1973).

    Article  Google Scholar 

  47. Kubie, J.L. & Ranck, J.B. Jr. Sensory-behavioral correlates in individual hippocampus neurons in three situations: Space and context. in Neurobiology of the Hippocampus (ed. Seifert, W.) 433–447 (Academic Press, New York, 1983).

    Google Scholar 

  48. Markus, E.J. et al. Interactions between location and task affect the spatial and directional firing of hippocampal neurons. J. Neurosci. 15, 7079–7094 (1995).

    Article  CAS  Google Scholar 

  49. Vanderwolf, C.H. Hippocampal electrical activity and voluntary movement in the rat. Electroencephalogr. Clin. Neurophysiol. 26, 407–418 (1969).

    Article  CAS  Google Scholar 

  50. Muller, R.U., Kubie, J.L. & Ranck, J.B. Jr. Spatial firing patterns of hippocampal complex-spike cells in a fixed environment. J. Neurosci. 77, 1935–1950 (1987).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank J. Bohanick, J. Gerrard, S. de Dios, J. Dees, J. Yuan, K. Hardesty, N. Insel, J. Meltzer, J. Wang and K. Weaver-Sommers for help running experiments and processing data. This research was supported by Public Health Service grants AG12609, AG05805 and MH01565.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carol A Barnes.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosenzweig, E., Redish, A., McNaughton, B. et al. Hippocampal map realignment and spatial learning. Nat Neurosci 6, 609–615 (2003). https://doi.org/10.1038/nn1053

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1053

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing