Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Right parietal cortex is involved in the perception of sound movement in humans

Abstract

Changes in the delay (phase) and amplitude of sound at the ears are cues for the analysis of sound movement. The detection of these cues depends on the convergence of the inputs to each ear, a process that first occurs in the brainstem. The conscious perception of these cues is likely to involve higher centers. Using novel stimuli that produce different perceptions of movement in the presence of identical phase and amplitude modulation components, we have demonstrated human brain areas that are active specifically during the perception of sound movement. Both functional magnetic resonance imaging (fMRI) and positron emission tomography (PET) demonstrated the involvement of the right parietal cortex in sound movement perception with these stimuli.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Function used to calculate the point of trading between the linear amplitude and phase excursions for subject 1.
Figure 2: Basis for the fMRI and PET paradigms.
Figure 3: Areas of increased activation using the add condition compared to the cancel condition in the fMRI experiment (see Methods).
Figure 4: Statistical parametric map showing area of increased activation using PET for add compared to the cancel condition (see Methods).

Similar content being viewed by others

References

  1. Strybel, T., Manligas, C.L. & Perrott, D.R. Auditory apparent motion under binaural and monaural listening conditions. Percept. Psychophys. 45, 371 –377 (1989)

    Article  CAS  Google Scholar 

  2. Middlebrooks, J.C. & Green, D.M. Sound localisation by human listeners . Ann. Rev. Psychol. 42, 135– 159 (1991)

    Article  CAS  Google Scholar 

  3. Wightman, F.L. & Kistler, D.J. Headphone simulation of free-field listening.II, Psychophysical validation. J. Acoust. Soc. Am. 85, 868–878 (1989)

    Article  CAS  Google Scholar 

  4. Goldberg, J.M. & Brown, P.B . Functional organisation of the dog superior olivary complex: an anatomical and electrophysiological study. J. Neurophysiol. 31, 639–656 (1968)

    Article  CAS  Google Scholar 

  5. Irvine, D.R.F. The auditory brainstem. A review of the structure and function of the auditory brainstem processing mechanisms Vol. 7 (ed. Ottoson, D.) (Springer, Berlin, 1986)

    Google Scholar 

  6. Spitzer, M.W. & Semple M.N. Responses of inferior colliculus neurons to time-varying interaural phase disparity, effects of shifting the locus of virtual motion. J. Neurophysiol. 69, 1245–1263 (1993)

    Article  CAS  Google Scholar 

  7. Stumpf, E., Toronchuk, J.M. & Cynader, M.S. Neurons in cat primary auditory cortex sensitive to correlates of auditory motion in three-dimensional space. Exp. Brain Res. 88, 158–168 (1991)

    Article  Google Scholar 

  8. Ahissar, M., Ahissar, E., Bergman, H. & Vaadia, E. Encoding of sound source location and movement, activity of single neurons and interactions between adjacent neurons in the monkey auditory cortex. J. Neurophysiol. 67, 203–215 (1992)

    Article  CAS  Google Scholar 

  9. Altman, J.A. & Kalmykova, I.V. Role of dog's auditory cortex in discrimination of sound signals simulating sound source movement. Hear. Res. 24, 243–253 (1986)

    Article  CAS  Google Scholar 

  10. Griffiths, T.D., Bates, D., Rees, A., Witton, C., Gholkar, A. & Green, G.G.R. Sound movement detection deficit due to a brainstem lesion. J. Neurol. Neurosurg. Psychiatry 62, 522–526 (1997)

    Article  CAS  Google Scholar 

  11. Griffiths, T.D. et al. Spatial and temporal auditory processing deficits following right hemisphere infarction. A psychophysical study. Brain 120, 785–794 (1997)

    Article  Google Scholar 

  12. Hafter, E.R. & Carrier, S.C. Binaural interaction in low-frequency stimuli, the inability to trade time and intensity completely. J. Acoust. Soc. Amer. 51, 1852–1862 (1972)

    Article  CAS  Google Scholar 

  13. Penhune, V.B., Zatorre, R.J., MacDonald, J.D. & Evans A.C. Interhemispheric anatomical differences in human primary auditory cortex, probabalistic mapping and volume measurement from magnetic resonance scans. Cereb. Cortex 6, 661–672 (1996)

    Article  CAS  Google Scholar 

  14. Bisiach, E., Cornacchia, L., Sterzi, R. & Vallar, G. Disorders of perceived auditory lateralisation after lesions of the right hemisphere. Brain 107, 37–52 (1984)

    Article  Google Scholar 

  15. Griffiths, T.D. et al. Evidence for a sound movement centre in the human cerebral cortex. Nature 383, 425–427 (1996)

    Article  CAS  Google Scholar 

  16. Griffiths, T.D., Bench, C.J. & Frackowiak, R.S.J. Cortical areas in man selectively activated by apparent sound movement. Curr. Biol. 4, 892– 895 (1994)

    Article  CAS  Google Scholar 

  17. Zakarauskas, P. & Cynader, M.S. Aural intensity for a moving source . Hear. Res. 52, 233–244 (1991)

    Article  CAS  Google Scholar 

  18. Makela, J.P. & McEvoy, L. Auditory evoked fields to illusory sound source movement. Exp. Brain Res. 110, 446–454 (1996)

    Article  CAS  Google Scholar 

  19. Corbetta, M., Miezin, F.M., Shulman, G.L. & Petersen, S.E. A PET study of visuospatial attention. J. Neurosci. 13, 1202–1226 (1993)

    Article  CAS  Google Scholar 

  20. Posner, M.I. Orienting of attention. Q. J. Exp. Psychol. 32, 3– 25 (1980)

    Article  CAS  Google Scholar 

  21. Pugh, K.R. et al. Auditory selective attention, an fMRI investigation. Neuroimage 4, 159–173 (1996)

    Article  CAS  Google Scholar 

  22. Andersen, R.A. Encoding of intention and spatial location in the posterior parietal cortex. Cereb. Cortex 5, 457–469 (1995)

    Article  CAS  Google Scholar 

  23. Watson, J.D.G. et al. Area V5 of the human brain, evidence from a combined study using positron emission tomography and magnetic resonance imaging. Cereb. Cortex 3, 79–94 (1993)

    Article  CAS  Google Scholar 

  24. Mountcastle, V.B. The parietal cortex and some higher brain functions. Cereb. Cortex, 5, 377–390 (1995)

    Article  CAS  Google Scholar 

  25. Brugge, J.F., Reale, R.A. & Hind, J.E. in Acoustical signal processing in the central auditory system. (Plenum, New York/London,1996)

    Google Scholar 

  26. Middlebrooks, J.C., Clock, A.E., Xu, L. & Green, D.M. A panoramic code for sound location by cortical neurons. Science 264 , 842–844 (1994)

    Article  CAS  Google Scholar 

  27. Bandettini, P.A., Jesmanowicz, A., Van Kylen, J., Birn, R.M. & Hyde J.S. Functional MRI of brain activation induced by scanner acoustic noise. Mag. Res. Med. (1998>, in press)

  28. Bregman, A. Auditory scene analysis. (MIT Press, Cambridge, Massachussetts, 1990 )

    Google Scholar 

  29. Tzourio, N., Massioui, F.E., Crivello, F., Joliot, M., Renault, B. & Mazoyer, B. Functional anatomy of human auditory attention studied with PET. Neuroimage 5, 63–77 (1997)

    Article  CAS  Google Scholar 

  30. Owen, A.M., Evans, A.C. & Petrides, M. Evidence for a two stage model of spatial working memory processing within the lateral frontal cortex, a positron emission tomographic study. Cereb. Cortex 6, 31– 38 (1996)

    Article  CAS  Google Scholar 

  31. Paus, T. Location and function of the human frontal eye fields, a selective review. Neuropsychologia 34, 475–483 (1996)

    Article  CAS  Google Scholar 

  32. Sheliga, B.M., Riggio, L. & Rizzolatti, G. Orienting of attention and eye movements. Exp. Brain Res. 98, 507–522 (1994)

    Article  CAS  Google Scholar 

  33. Petrides, M. & Pandya, D.N. Projections to the frontal lobe from the posterior parietal region in the rhesus monkey. J. Comp. Neurol. 20, 249–262 (1984)

    Google Scholar 

  34. Cavada, C. & Goldman-Rakic, P.S. Posterior parietal cortex in rhesus monkeys, II Evidence for segregated corticocortical networks linking sensory and limbic areas with the frontal lobe. J. Comp. Neurol. 28, 422–445 (1989)

    Article  Google Scholar 

  35. Green, G.G.R., Heffer, J.S. & Ross, D.A. The detectability of apparent source movement effected by interaural phase modulation. J. Physiol. 260, 49P (1976)

    CAS  PubMed  Google Scholar 

  36. Friston, K.J. et al. Spatial registration and normalisation of images. Human Brain Mapping 2, 1–25 (1995)

    Google Scholar 

  37. Friston, K.J., Williams, S., Howard, R., Frackowiak, R.S.J. & Turner, R. Movement-related effects in fMRI time-series. Magnetic Resonance in Medicine 35, 346– 355 (1996)

    Article  CAS  Google Scholar 

  38. Friston, K.J., Holmes, A., Poline, J-B., Price, C.J. & Frith, C.D. Detecting activations in PET and fMRI, levels of inference and power. Neuroimage 40, 223– 235 (1996)

    Article  Google Scholar 

  39. Friston, K.J. et al. Statistical parametric maps in functional imaging, a general linear approach. Human Brain Mapping 2, 189–210 (1995)

    Article  Google Scholar 

  40. Talairach, P. & Tournoux, J. A stereotactic coplanar atlas of the human brain. (Thieme, Stuttgart, 1988)

    Google Scholar 

Download references

Acknowledgements

TDG, GR, CB, RT and RSJF are supported by the Wellcome Trust. CW is supported by the Medical Research Council (UK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy D. Griffiths.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Griffiths, T., Rees, G., Rees, A. et al. Right parietal cortex is involved in the perception of sound movement in humans. Nat Neurosci 1, 74–79 (1998). https://doi.org/10.1038/276

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/276

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing