Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

More than a rhythm of life: breathing as a binder of orofacial sensation

Abstract

When rodents engage in the exploration of novel stimuli, breathing occurs at an accelerated rate that is synchronous with whisking. We review the recently observed relationships between breathing and the sensations of smell and vibrissa-based touch. We consider the hypothesis that the breathing rhythm serves not only as a motor drive signal, but also as a common clock that binds these two senses into a common percept. This possibility may be extended to include taste through the coordination of licking with breathing. Here we evaluate the status of experimental evidence that pertains to this hypothesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Brainstem circuits generate and coordinate orofacial actions and encode non-olfactory orofacial stimuli.
Figure 2: Smell is coded by projection neurons in the olfactory bulb whose spike rate is phase-locked to the breathing cycle.
Figure 3: Vibrissa touch during exploratory whisking is coded by neurons in layer 4 and 5a of primary vibrissa cortex.
Figure 4: Coordination of sniffing and whisking and the potential functional and potential anatomical basis for binding of synchronous events.

Similar content being viewed by others

References

  1. Feldman, J.L. & Del Negro, C.A. Looking for inspiration: new perspectives on respiratory rhythm. Nat. Rev. Neurosci. 7, 232–242 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Garcia, A.J., Zanella, S., Koch, H., Doi, A. & Ramirez, J.M. Networks within networks: the neuronal control of breathing. Prog. Brain Res. 188, 31–50 (2011).

    PubMed  PubMed Central  Google Scholar 

  3. Tan, W., Pagliardini, S., Yang, P., Janczewski, W.A. & Feldman, J.L. Projections of preBötzinger complex neurons in adult rats. J. Comp. Neurol. 518, 1862–1878 (2010).

    PubMed  PubMed Central  Google Scholar 

  4. Moore, J.D. et al. Hierarchy of orofacial rhythms revealed through whisking and breathing. Nature 497, 205–210 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Travers, J.B., Dinardo, L.A. & Karimnamazi, H. Motor and premotor mechanisms of licking. Neurosci. Biobehav. Rev. 21, 631–647 (1997).

    CAS  PubMed  Google Scholar 

  6. Koizumi, H. et al. Functional imaging, spatial reconstruction, and biophysical analysis of a respiratory motor circuit isolated in vitro. J. Neurosci. 28, 2353–2365 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. McFarland, D.H. & Lund, J.P. An investigation of the coupling between respiration, mastication, and swallowing in the awake rabbit. J. Neurophysiol. 69, 95–108 (1993).

    CAS  PubMed  Google Scholar 

  8. Sherrey, J.H. & Megirian, D. State dependence of upper airway respiratory motoneurons: functions of the cricothyroid and nasolabial muscles of the unanesthetized rat. Electroencephalogr. Clin. Neurophysiol. 43, 218–228 (1977).

    CAS  PubMed  Google Scholar 

  9. Singer, W. & Gray, C.M. Visual feature integration and the temporal correlation hypothesis. Annu. Rev. Neurosci. 18, 555–586 (1995).

    CAS  PubMed  Google Scholar 

  10. Varela, F., Lachaux, J.-P., Rodriguez, E. & Martinerie, J. The brainweb: phase synchronization and large-scale integration. Nat. Rev. Neurosci. 2, 229–239 (2001).

    CAS  PubMed  Google Scholar 

  11. Adrian, E.D. Olfactory reactions in the brain of the hedgehog. J. Physiol. (Lond.) 100, 459–473 (1942).

    CAS  Google Scholar 

  12. Cury, K.M. & Uchida, N. Robust odor coding via inhalation-coupled transient activity in the mammalian olfactory bulb. Neuron 68, 570–585 (2010).

    CAS  PubMed  Google Scholar 

  13. Uchida, N. & Mainen, Z.F. Speed and accuracy of olfactory discrimination in the rat. Nat. Neurosci. 6, 1224–1229 (2003).

    CAS  PubMed  Google Scholar 

  14. Sobel, E.C. & Tank, D.W. Timing of odor stimulation does not alter patterning of olfactory bulb unit activity in freely breathing rats. J. Neurophysiol. 69, 1331–1337 (1993).

    CAS  PubMed  Google Scholar 

  15. Wallois, F., Macron, J.M., Jounieaux, V. & Duron, B. Trigeminal nasal receptors related to respiration and to various stimuli in rats. Respir. Physiol. 85, 111–125 (1991).

    CAS  PubMed  Google Scholar 

  16. Grosmaitre, X., Santarelli, L.C., Tan, J., Luo, M. & Ma, M. Dual functions of mammalian olfactory sensory neurons as odor detectors and mechanical sensors. Nat. Neurosci. 10, 348–354 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Shusterman, R., Smear, M.C., Koulakov, A.A. & Rinberg, D. Precise olfactory responses tile the sniff cycle. Nat. Neurosci. 14, 1039–1044 (2011).

    CAS  PubMed  Google Scholar 

  18. Dhawale, A.K., Hagiwara, A., Bhalla, U.S., Murthy, V.N. & Albeanu, D.F. Non-redundant odor coding by sister mitral cells revealed by light addressable glomeruli in the mouse. Nat. Neurosci. 13, 1404–1412 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Reisert, J. & Zhao, H. Response kinetics of olfactory receptor neurons and the implications in olfactory coding. J. Gen. Physiol. 138, 303–310 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Carey, R.M. & Wachowiak, M. Effect of sniffing on the temporal structure of mitral/tufted cell output from the olfactory bulb. J. Neurosci. 31, 10615–10626 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Smear, M., Shusterman, R., O'Connor, R., Bozza, T. & Rinberg, D. Perception of sniff phase in mouse olfaction. Nature 479, 397–400 (2011).

    CAS  PubMed  Google Scholar 

  22. Miura, K., Mainen, Z.F. & Uchida, N. Odor representation in olfactory cortex: distributed rate coding and decorrelated population activity. Neuron 74, 1087–1098 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Curtis, J.C. & Kleinfeld, D. Phase-to-rate transformations encode touch in cortical neurons of a scanning sensorimotor system. Nat. Neurosci. 12, 492–501 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. O'Connor, D.H., Peron, S.P., Huber, D. & Svoboda, K. Neural activity in barrel cortex underlying vibrissa-based object localization in mice. Neuron 67, 1048–1061 (2010).

    CAS  PubMed  Google Scholar 

  25. O'Connor, D.H. et al. Vibrissa-based object localization in head-fixed mice. J. Neurosci. 30, 1947–1967 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Mehta, S.B., Whitmer, D., Figueroa, R., Williams, B.A. & Kleinfeld, D. Active spatial perception in the vibrissa scanning sensorimotor system. PLoS Biol. 5, e15 (2007).

    PubMed  PubMed Central  Google Scholar 

  27. Knutsen, P.M., Pietr, M. & Ahissar, E. Haptic object localization in the vibrissal system: behavior and performance. J. Neurosci. 26, 8451–8464 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Kleinfeld, D. & Deschênes, M. Neuronal basis for object location in the vibrissa scanning sensorimotor system. Neuron 72, 455–468 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Szwed, M., Bagdasarian, K. & Ahissar, E. Coding of vibrissal active touch. Neuron 40, 621–630 (2003).

    CAS  PubMed  Google Scholar 

  30. Hires, S.A., Pammer, L., Svoboda, K. & Golomb, D. Tapered whiskers are required for active tactile sensation. Elife 2, e01350 (2013).

    PubMed  PubMed Central  Google Scholar 

  31. Fee, M.S., Mitra, P.P. & Kleinfeld, D. Central versus peripheral determinates of patterned spike activity in rat vibrissa cortex during whisking. J. Neurophysiol. 78, 1144–1149 (1997).

    CAS  PubMed  Google Scholar 

  32. Poulet, J.F. & Petersen, C.C. Internal brain state regulates membrane potential synchrony in barrel cortex of behaving mice. Nature 454, 881–885 (2008).

    CAS  PubMed  Google Scholar 

  33. Welker, W.I. Analysis of sniffing of the albino rat. Behav. 22, 223–244 (1964).

    Google Scholar 

  34. Ranade, S., Hangya, B. & Kepecs, A. Multiple modes of phase locking between sniffing and whisking during active exploration. J. Neurosci. 33, 8250–8256 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Ketchum, K.L. & Haberly, L.B. Membrane currents evoked by afferent fiber stimulation in rat piriform cortex. I. Current source-density analysis. J. Neurophysiol. 69, 248–260 (1993).

    CAS  PubMed  Google Scholar 

  36. Vaidya, S.P. & Johnston, D. Temporal synchrony and gamma-to-theta power conversion in the dendrites of CA1 pyramidal neurons. Nat. Neurosci. 16, 1812–1820 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Haider, B., Duque, A., Hasenstaub, A.R. & McCormick, D.A. Neocortical network activity in vivo is generated through a dynamic balance of excitation and inhibition. J. Neurosci. 26, 4535–4545 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Salinas, E. & Sejnowski, T.J. Impact of correlated synaptic input on output firing rate and variability in simple neuronal models. J. Neurosci. 20, 6193–6209 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. O'Connor, D.H. et al. Neural coding during active somatosensation revealed using illusory touch. Nat. Neurosci. 16, 958–965 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Rolls, E.T. The rules of formation of the olfactory representations found in the orbitofrontal cortex olfacory ares in primates. Chem. Senses 26, 595–604 (2001).

    CAS  PubMed  Google Scholar 

  41. Johnston, J.B. Further contributions to the study of the evolution of the forebrain. J. Comp. Neurol. 35, 337–481 (1923).

    Google Scholar 

  42. McDonald, A.J. Cortical pathways to the mammalian amygdala. Prog. Neurobiol. 55, 257–332 (1998).

    CAS  PubMed  Google Scholar 

  43. Ray, J.P. & Price, J.L. The organization of the thalamocortical connections of the mediodorsal thalamic nucleus in the rat, related to the ventral forebrain-prefrontal cortex topography. J. Comp. Neurol. 323, 167–197 (1992).

    CAS  PubMed  Google Scholar 

  44. Rousseaux, M., Muller, P., Gahide, I., Mottin, Y. & Romon, M. Disorders of smell, taste, and food intake in a patient with a dorsomedial thalamic infarct. Stroke 27, 2328–2330 (1996).

    CAS  PubMed  Google Scholar 

  45. Berg, R.W., Whitmer, D. & Kleinfeld, D. Exploratory whisking by rat is not phase-locked to the hippocampal theta rhythm. J. Neurosci. 26, 6518–6522 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Margrie, T.W. & Schaefer, A.T. Theta oscillation coupled spike latencies yield computational vigour in a mammalian sensory system. J. Physiol. (Lond.) 546, 363–374 (2003).

    CAS  Google Scholar 

  47. Macrides, F., Eichenbaum, H.B. & Forbes, W.B. Temporal relationship between sniffing and the limbic theta rhythm during odor discrimination reversal learning. J. Neurosci. 2, 1705–1717 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Nakamura, Y. & Katakura, N. Generation of masticatory rhythm in the brainstem. Neurosci. Res. 23, 1–19 (1995).

    CAS  PubMed  Google Scholar 

  49. Takatoh, J. et al. New modules are added to vibrissal premotor circuitry with the emergence of exploratory whisking. Neuron 77, 346–360 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Travers, J.B., Herman, K. & Travers, S.P. Suppression of 3rd ventricular NPY-elicited feeding following medullary reticular formation infusion of muscimol. Behav. Neurosci. 124, 225–233 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This Perspective is dedicated to the late John C. Curtis. We thank W. Denk, B. Friedman, J.S. Isaacson, S. Jacobson, H.J. Karten, T. Komiyama, D. Rinberg and K. Svoboda for discussions, and K. Miura, D. Rinberg and N. Uchida for supplying data sets. This perspective was conceived at a 2013 Janelia Farms Research Center meeting and the subsequent work was supported by grants from the National Institute of Mental Health (MH085499), the National Institute of Neurological Disorders and Stroke (NS058668 and NS077986), the Canadian Institutes of Health Research (grant MT-5877), and the US-Israeli Binational Foundation (2011432).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Kleinfeld.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kleinfeld, D., Deschênes, M., Wang, F. et al. More than a rhythm of life: breathing as a binder of orofacial sensation. Nat Neurosci 17, 647–651 (2014). https://doi.org/10.1038/nn.3693

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3693

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing